Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043970

RESUMO

Z-discs are core ultrastructural organizers of cardiomyocytes that modulate many facets of cardiac pathogenesis. Yet a comprehensive proteomic atlas of Z-disc-associated components remain incomplete. Here, we established an adeno-associated virus (AAV)-delivered, cardiomyocyte-specific, proximity-labeling approach to characterize the Z-disc proteome in vivo. We found palmdelphin (PALMD) as a novel Z-disc-associated protein in both adult murine cardiomyocytes and human pluripotent stem cell-derived cardiomyocytes. Germline and cardiomyocyte-specific Palmd knockout mice were grossly normal at baseline but exhibited compromised cardiac hypertrophy and aggravated cardiac injury upon long-term isoproterenol treatment. By contrast, cardiomyocyte-specific PALMD overexpression was sufficient to mitigate isoproterenol-induced cardiac injury. PALMD ablation perturbed the transverse tubule (T-tubule)-sarcoplasmic reticulum (SR) ultrastructures, which formed the Z-disc-associated junctional membrane complex (JMC) essential for calcium handling and cardiac function. These phenotypes were associated with the reduction of nexilin (NEXN), a crucial Z-disc-associated protein that is essential for both Z-disc and JMC structures and functions. PALMD interacted with NEXN and enhanced its protein stability while the Nexn mRNA level was not affected. AAV-based NEXN addback rescued the exacerbated cardiac injury in isoproterenol-treated PALMD-depleted mice. Together, this study discovered PALMD as a potential target for myocardial protection and highlighted in vivo proximity proteomics as a powerful approach to nominate novel players regulating cardiac pathogenesis.

2.
Sci Rep ; 14(1): 3599, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351129

RESUMO

Mismatch Repair (MMR) mechanisms play a pivotal role in rectifying DNA replication errors and maintaining the stability of DNA microsatellite structure. Colorectal cancer (CRC) can be characterized into microsatellite stability (MSS) and microsatellite instability (MSI) subtypes based on the functionality of MMR. MSI CRC notably exhibits enhanced chemotherapy resistance, attributable to diminished MMR-related protein expression. Cold atmospheric plasma (CAP) has emerged as a promising treatment modality, demonstrating efficacy in inducing apoptosis in various cancer cells. However, the therapeutic impact of CAP on MSI colorectal cancer, and the underlying mechanisms remain elusive. In this study, we investigated the effects of CAP on MSI (MC38, HCT116, and LOVO) and MSS (CT26 and HT29) CRC cell lines. We are probing into the products of CAP treatment. Our findings indicate that CAP treatment induces comparable effects on apoptosis, reactive oxygen species (ROS), and reactive nitrogen species (RNS), as well as the expression of apoptosis-related proteins in both MSI and MSS cells. Mechanistically, CAP treatment led to an elevation in the expression of mismatch repair proteins (MLH1 and MSH2), particularly in MSI cells, which notably have been proven to facilitate the activation of apoptosis-related proteins. Collectively, our study reveals that CAP enhances apoptotic signaling and induces apoptosis in MSI colorectal cancer cells by upregulating the expression of MMR-related proteins, thereby reinforcing MMR stabilization.


Assuntos
Neoplasias Colorretais , Reparo de Erro de Pareamento de DNA , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína 2 Homóloga a MutS/genética , Instabilidade de Microssatélites , Repetições de Microssatélites , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico
3.
Int J Biol Macromol ; 264(Pt 1): 130547, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431012

RESUMO

Plasticizers like Bis(2-ethylhexyl)phthalate (DEHP) are commonly used to enhance plastic properties but pose environmental and health risks. This study successfully derived plasticizers X and Y from rice straws, demonstrating efficacy in chitosan polymer coatings. Chitosan-based polymers exhibit exceptional hardness, with a value of 300 MPa, due to their enriched structure and robust chitosan bonding. This surpasses the hardness of DEHP. Zebrafish exposure over 5 days revealed that X and Y had no significant behavioral impact, while DEHP caused noticeable toxic effects. Maternal DEHP exposure reduced placental cell growth, unlike X and Y, which had no adverse effects on uterine differentiation or placenta formation, suggesting their safety in human pregnancy. The successful development of X and Y represents a crucial step towards greener plasticizers, addressing environmental concerns and promoting safer alternatives in various industries.


Assuntos
Quitosana , Dietilexilftalato , Oryza , Animais , Feminino , Humanos , Gravidez , Plastificantes/química , Dietilexilftalato/química , Peixe-Zebra , Placenta , Polímeros
4.
Am J Transl Res ; 16(5): 1740-1748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883341

RESUMO

OBJECTIVE: To identify factors influencing recurrence after percutaneous transhepatic choledochoscopic lithotripsy (PTCSL) and to develop a predictive model. METHODS: We retrospectively analyzed clinical data from 354 patients with intrahepatic and extrahepatic bile duct stones treated with PTCSL at Qinzhou First People's Hospital between February 2018 and January 2020. Patients were followed for three years and categorized into non-recurrence and recurrence groups based on postoperative outcome. Univariate analysis identified possible predictors of stone recurrence. Data were split using the gradient boosting machine (GBM) algorithm, assigning 70% as the training set and 30% as the test set. The predictive performance of the GBM model was assessed using the receiver operating characteristic (ROC) curve and calibration curve, and compared with a logistic regression model. RESULTS: Six factors were identified as significant predictors of recurrence: age, diabetes, total bilirubin, biliary stricture, number of stones, and stone diameter. The GBM model, developed based on these factors, showed high predictive accuracy. The area under the ROC curve (AUC) was 0.763 (95% CI: 0.695-0.830) for the training set and 0.709 (95% CI: 0.596-0.822) for the test set. Optimal cutoff values were 0.286 and 0.264, with sensitivities of 62.30% and 66.70%, and specificities of 77.20% and 68.50%, respectively. Calibration curves indicated good agreement between predicted probabilities and observed recurrence rates in both sets. DeLong's test revealed no significant differences between the GBM and logistic regression models in predictive performance (training set: D = 0.003, P = 0.997 > 0.05; test set: D = 0.075, P = 0.940 > 0.05). CONCLUSION: Biliary stricture, stone diameter, diabetes, stone number, age, and total bilirubin significantly influence stone recurrence after PTCSL. The GBM model, based on these factors, demonstrates robust accuracy and discrimination. Both GBM and logistic regression models effectively predicted stone recurrence post-PTCSL.

5.
Stem Cells Transl Med ; 13(3): 293-308, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173411

RESUMO

Human adipose-derived stem cells (ASCs) have shown immense potential for regenerative medicine. Our previous work demonstrated that chitosan nano-deposited surfaces induce spheroid formation and differentiation of ASCs for treating sciatic nerve injuries. However, the underlying cell fate and differentiation mechanisms of ASC-derived spheroids remain unknown. Here, we investigate the epigenetic regulation and signaling coordination of these therapeutic spheroids. During spheroid formation, we observed significant increases in histone 3 trimethylation at lysine 4 (H3K4me3), lysine 9 (H3K9me3), and lysine 27 (H3K27me3), accompanied by increased histone deacetylase (HDAC) activities and decreased histone acetyltransferase activities. Additionally, HDAC5 translocated from the cytoplasm to the nucleus, along with increased nuclear HDAC5 activities. Utilizing single-cell RNA sequencing (scRNA-seq), we analyzed the chitosan-induced ASC spheroids and discovered distinct cluster subpopulations, cell fate trajectories, differentiation traits, and signaling networks using the 10x Genomics platform, R studio/language, and the Ingenuity Pathway Analysis (IPA) tool. Specific subpopulations were identified within the spheroids that corresponded to a transient reprogramming state (Cluster 6) and the endpoint cell state (Cluster 3). H3K4me3 and H3K9me3 were discovered as key epigenetic regulators by IPA to initiate stem cell differentiation in Cluster 6 cells, and confirmed by qPCR and their respective histone methyltransferase inhibitors: SNDX-5613 (a KMT2A inhibitor for H3K4me3) and SUVi (an SUV39H1 inhibitor for H3K9me3). Moreover, H3K9me3 and HDAC5 were involved in regulating downstream signaling and neuronal markers during differentiation in Cluster 3 cells. These findings emphasize the critical role of epigenetic regulation, particularly H3K4me3, H3K9me3, and HDAC5, in shaping stem cell fate and directing lineage-specific differentiation.


Assuntos
Quitosana , Histonas , Humanos , Histonas/metabolismo , Epigênese Genética , Lisina/metabolismo , Diferenciação Celular , Células-Tronco , Histona Desacetilases
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa