Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.777
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987597

RESUMO

Glutamate is traditionally viewed as the first messenger to activate NMDAR (N-methyl-D-aspartate receptor)-dependent cell death pathways in stroke1,2, but unsuccessful clinical trials with NMDAR antagonists implicate the engagement of other mechanisms3-7. Here we show that glutamate and its structural analogues, including NMDAR antagonist L-AP5 (also known as APV), robustly potentiate currents mediated by acid-sensing ion channels (ASICs) associated with acidosis-induced neurotoxicity in stroke4. Glutamate increases the affinity of ASICs for protons and their open probability, aggravating ischaemic neurotoxicity in both in vitro and in vivo models. Site-directed mutagenesis, structure-based modelling and functional assays reveal a bona fide glutamate-binding cavity in the extracellular domain of ASIC1a. Computational drug screening identified a small molecule, LK-2, that binds to this cavity and abolishes glutamate-dependent potentiation of ASIC currents but spares NMDARs. LK-2 reduces the infarct volume and improves sensorimotor recovery in a mouse model of ischaemic stroke, reminiscent of that seen in mice with Asic1a knockout or knockout of other cation channels4-7. We conclude that glutamate functions as a positive allosteric modulator for ASICs to exacerbate neurotoxicity, and preferential targeting of the glutamate-binding site on ASICs over that on NMDARs may be strategized for developing stroke therapeutics lacking the psychotic side effects of NMDAR antagonists.

2.
Chem Rev ; 124(3): 1247-1287, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38259248

RESUMO

Metallic materials are usually composed of single phase or multiple phases, which refers to homogeneous regions with distinct types of the atom arrangement. The recent studies on nanostructured metallic materials provide a variety of promising approaches to engineer the phases at the nanoscale. Tailoring phase size, phase distribution, and introducing new structures via phase transformation contribute to the precise modification in deformation behaviors and electronic structures of nanostructural metallic materials. Therefore, phase engineering of nanostructured metallic materials is expected to pave an innovative way to develop materials with advanced mechanical and functional properties. In this review, we present a comprehensive overview of the engineering of heterogeneous nanophases and the fundamental understanding of nanophase formation for nanostructured metallic materials, including supra-nano-dual-phase materials, nanoprecipitation- and nanotwin-strengthened materials. We first review the thermodynamics and kinetics principles for the formation of the supra-nano-dual-phase structure, followed by a discussion on the deformation mechanism for structural metallic materials as well as the optimization in the electronic structure for electrocatalysis. Then, we demonstrate the origin, classification, and mechanical and functional properties of the metallic materials with the structural characteristics of dense nanoprecipitations or nanotwins. Finally, we summarize some potential research challenges in this field and provide a short perspective on the scientific implications of phase engineering for the design of next-generation advanced metallic materials.

3.
Proc Natl Acad Sci U S A ; 120(17): e2216247120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068253

RESUMO

In Parkinson's disease (PD), reduced dopamine levels in the basal ganglia have been associated with altered neuronal firing and motor dysfunction. It remains unclear whether the altered firing rate or pattern of basal ganglia neurons leads to parkinsonism-associated motor dysfunction. In the present study, we show that increased histaminergic innervation of the entopeduncular nucleus (EPN) in the mouse model of PD leads to activation of EPN parvalbumin (PV) neurons projecting to the thalamic motor nucleus via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to postsynaptic H2R. Simultaneously, this effect is negatively regulated by presynaptic H3R activation in subthalamic nucleus (STN) glutamatergic neurons projecting to the EPN. Notably, the activation of both types of receptors ameliorates parkinsonism-associated motor dysfunction. Pharmacological activation of H2R or genetic upregulation of HCN2 in EPNPV neurons, which reduce neuronal burst firing, ameliorates parkinsonism-associated motor dysfunction independent of changes in the neuronal firing rate. In addition, optogenetic inhibition of EPNPV neurons and pharmacological activation or genetic upregulation of H3R in EPN-projecting STNGlu neurons ameliorate parkinsonism-associated motor dysfunction by reducing the firing rate rather than altering the firing pattern of EPNPV neurons. Thus, although a reduced firing rate and more regular firing pattern of EPNPV neurons correlate with amelioration in parkinsonism-associated motor dysfunction, the firing pattern appears to be more critical in this context. These results also confirm that targeting H2R and its downstream HCN2 channel in EPNPV neurons and H3R in EPN-projecting STNGlu neurons may represent potential therapeutic strategies for the clinical treatment of parkinsonism-associated motor dysfunction.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Núcleo Subtalâmico , Camundongos , Animais , Núcleo Entopeduncular , Tálamo , Transtornos Parkinsonianos/terapia , Receptores Histamínicos
4.
PLoS Pathog ; 19(1): e1011116, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689489

RESUMO

Bat coronavirus RaTG13 shares about 96.2% nucleotide sequence identity with that of SARS-CoV-2 and uses human and Rhinolophus affinis (Ra) angiotensin-converting enzyme 2 (ACE2) as entry receptors. Whether there are bat species other than R. affinis susceptible to RaTG13 infection remains elusive. Here, we show that, among 18 different bat ACE2s tested, only RaACE2 is highly susceptible to transduction by RaTG13 S pseudovirions, indicating that the bat species harboring RaTG13 might be very limited. RaACE2 has seven polymorphic variants, RA-01 to RA-07, and they show different susceptibilities to RaTG13 S pseudovirions transduction. Sequence and mutagenesis analyses reveal that residues 34, 38, and 83 in RaACE2 might play critical roles in interaction with the RaTG13 S protein. Of note, RaACE2 polymorphisms have minimal effect on S proteins of SARS-CoV-2 and several SARS-CoV-2 related CoVs (SC2r-CoVs) including BANAL-20-52 and BANAL-20-236 in terms of binding, membrane fusion, and pseudovirus entry. Further mutagenesis analyses identify residues 501 and 505 in S proteins critical for the recognition of different RaACE2 variants and pangolin ACE2 (pACE2), indicating that RaTG13 might have not been well adapted to R. affinis bats. While single D501N and H505Y changes in RaTG13 S protein significantly enhance the infectivity and minimize the difference in susceptibility among different RaACE2 variants, an N501D substitution in SARS-CoV-2 S protein displays marked disparity in transduction efficiencies among RaACE2 variants with a significant reduction in infectivity on several RaACE2 variants. Finally, a T372A substitution in RaTG13 S protein not only significantly increases infectivity on all RaACE2 variants, but also markedly enhances entry on several bat ACE2s including R. sinicus YN, R. pearsonii, and R. ferrumeiqunum. However, the T372A mutant is about 4-fold more sensitive to neutralizing sera from mice immunized with BANAL-20-52 S, suggesting that the better immune evasion ability of T372 over A372 might contribute to the natural selective advantage of T372 over A372 among bat CoVs. Together, our study aids a better understanding of coronavirus entry, vaccine design, and evolution.


Assuntos
COVID-19 , Quirópteros , Animais , Camundongos , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
J Pathol ; 263(1): 8-21, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38332735

RESUMO

Pompe disease is a lysosomal storage disorder that preferentially affects muscles, and it is caused by GAA mutation coding acid alpha-glucosidase in lysosome and glycophagy deficiency. While the initial pathology of Pompe disease is glycogen accumulation in lysosomes, the special role of the lysosomal pathway in glycogen degradation is not fully understood. Hence, we investigated the characteristics of accumulated glycogen and the mechanism underlying glycophagy disturbance in Pompe disease. Skeletal muscle specimens were obtained from the affected sites of patients and mouse models with Pompe disease. Histological analysis, immunoblot analysis, immunofluorescence assay, and lysosome isolation were utilized to analyze the characteristics of accumulated glycogen. Cell culture, lentiviral infection, and the CRISPR/Cas9 approach were utilized to investigate the regulation of glycophagy accumulation. We demonstrated residual glycogen, which was distinguishable from mature glycogen by exposed glycogenin and more α-amylase resistance, accumulated in the skeletal muscle of Pompe disease. Lysosome isolation revealed glycogen-free glycogenin in wild type mouse lysosomes and variously sized glycogenin in Gaa-/- mouse lysosomes. Our study identified that a defect in the degradation of glycogenin-exposed residual glycogen in lysosomes was the fundamental pathological mechanism of Pompe disease. Meanwhile, glycogenin-exposed residual glycogen was absent in other glycogen storage diseases caused by cytoplasmic glycogenolysis deficiencies. In vitro, the generation of residual glycogen resulted from cytoplasmic glycogenolysis. Notably, the inhibition of glycogen phosphorylase led to a reduction in glycogenin-exposed residual glycogen and glycophagy accumulations in cellular models of Pompe disease. Therefore, the lysosomal hydrolysis pathway played a crucial role in the degradation of residual glycogen into glycogenin, which took place in tandem with cytoplasmic glycogenolysis. These findings may offer a novel substrate reduction therapeutic strategy for Pompe disease. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Glicoproteínas , Humanos , Camundongos , Animais , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/patologia , Doença de Depósito de Glicogênio Tipo II/terapia , Glicogênio/análise , Glicogênio/metabolismo , Glucosiltransferases/metabolismo , Músculo Esquelético/patologia , Lisossomos/metabolismo
6.
Nucleic Acids Res ; 51(D1): D678-D689, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350631

RESUMO

The National Institute of Allergy and Infectious Diseases (NIAID) established the Bioinformatics Resource Center (BRC) program to assist researchers with analyzing the growing body of genome sequence and other omics-related data. In this report, we describe the merger of the PAThosystems Resource Integration Center (PATRIC), the Influenza Research Database (IRD) and the Virus Pathogen Database and Analysis Resource (ViPR) BRCs to form the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) https://www.bv-brc.org/. The combined BV-BRC leverages the functionality of the bacterial and viral resources to provide a unified data model, enhanced web-based visualization and analysis tools, bioinformatics services, and a powerful suite of command line tools that benefit the bacterial and viral research communities.


Assuntos
Genômica , Software , Vírus , Humanos , Bactérias/genética , Biologia Computacional , Bases de Dados Genéticas , Influenza Humana , Vírus/genética
7.
Med Res Rev ; 44(4): 1662-1682, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38299968

RESUMO

Prostate, bladder, and kidney cancers are the most common malignancies of the urinary system. Chemotherapeutic drugs are generally used as adjuvant treatment in the middle, late, or recurrence stages after surgery for urologic cancers. However, traditional chemotherapy is plagued by problems such as poor efficacy, severe side effects, and complications. Copper-containing nanomedicines are promising novel cancer treatment modalities that can potentially overcome these disadvantages. Copper homeostasis and cuproptosis play crucial roles in the development, adaptability, and therapeutic sensitivity of urological malignancies. Cuproptosis refers to the direct binding of copper ions to lipoylated components of the tricarboxylic acid cycle, leading to protein oligomerization, loss of iron-sulfur proteins, proteotoxic stress, and cell death. This review focuses on copper homeostasis and cuproptosis as well as recent findings on copper and cuproptosis in urological malignancies. Furthermore, we highlight the potential therapeutic applications of copper- and cuproptosis-targeted therapies to better understand cuproptosis-based drugs for the treatment of urological tumors in the future.


Assuntos
Cobre , Neoplasias Urológicas , Humanos , Cobre/metabolismo , Neoplasias Urológicas/metabolismo , Neoplasias Urológicas/tratamento farmacológico , Animais , Homeostase
8.
J Biol Chem ; 299(2): 102851, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587767

RESUMO

Misfolded proteins are recognized and degraded through protein quality control (PQC) pathways, which are essential for maintaining proteostasis and normal cellular functions. Defects in PQC can result in disease, including cancer, cardiovascular disease, and neurodegeneration. The small ubiquitin-related modifiers (SUMOs) were previously implicated in the degradation of nuclear misfolded proteins, but their functions in cytoplasmic PQC are unclear. Here, in a systematic screen of SUMO protein mutations in the budding yeast Saccharomyces cerevisiae, we identified a mutant allele (Smt3-K38A/K40A) that sensitizes cells to proteotoxic stress induced by amino acid analogs. Smt3-K38A/K40A mutant strains also exhibited a defect in the turnover of a soluble PQC model substrate containing the CL1 degron (NES-GFP-Ura3-CL1) localized in the cytoplasm, but not the nucleus. Using human U2OS SUMO1- and SUMO2-KO cell lines, we observed a similar SUMO-dependent pathway for degradation of the mammalian degron-containing PQC reporter protein, GFP-CL1, also only in the cytoplasm but not the nucleus. Moreover, we found that turnover of GFP-CL1 in the cytoplasm was uniquely dependent on SUMO1 but not the SUMO2 paralogue. Additionally, we showed that turnover of GFP-CL1 in the cytoplasm is dependent on the AAA-ATPase, Cdc48/p97. Cellular fractionation studies and analysis of a SUMO1-GFP-CL1 fusion protein revealed that SUMO1 promotes cytoplasmic misfolded protein degradation by maintaining substrate solubility. Collectively, our findings reveal a conserved and previously unrecognized role for SUMO1 in regulating cytoplasmic PQC and provide valuable insights into the roles of sumoylation in PQC-associated diseases.


Assuntos
Proteólise , Proteína SUMO-1 , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Humanos , Citoplasma/metabolismo , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo
9.
J Am Chem Soc ; 146(8): 5355-5365, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358943

RESUMO

The twin boundary, a common lattice plane of mirror-symmetric crystals, may have high reactivity due to special atomic coordination. However, twinning platinum and iridium nanocatalysts are grand challenges due to the high stacking fault energies that are nearly 1 order of magnitude larger than those of easy-twinning gold and silver. Here, we demonstrate that Turing structuring, realized by selective etching of superthin metal film, provides 14.3 and 18.9 times increases in twin-boundary densities for platinum and iridium nanonets, comparable to the highly twinned silver nanocatalysts. The Turing configurations with abundant low-coordination atoms contribute to the formation of nanotwins and create a large active surface area. Theoretical calculations reveal that the specific atom arrangement on the twin boundary changes the electronic structure and reduces the energy barrier of water dissociation. The optimal Turing-type platinum nanonets demonstrated excellent hydrogen-evolution-reaction performance with a 25.6 mV overpotential at 10.0 mA·cm-2 and a 14.8-fold increase in mass activity. And the bifunctional Turing iridium catalysts integrated in the water electrolyzer had a mass activity 23.0 times that of commercial iridium catalysts. This work opens a new avenue for nanocrystal twinning as a facile paradigm for designing high-performance nanocatalysts.

10.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37052956

RESUMO

Coronaviruses are single-stranded, positive-sense RNA viruses that can infect many mammal and avian species. The Spike (S) protein of coronaviruses binds to a receptor on the host cell surface to promote viral entry. The interactions between the S proteins of coronaviruses and receptors of host cells are extraordinarily complex, with coronaviruses from different genera being able to recognize the same receptor and coronaviruses from the same genus able to bind distinct receptors. As the coronavirus disease 2019 pandemic has developed, many changes in the S protein have been under positive selection by altering the receptor-binding affinity, reducing antibody neutralization activities, or affecting T-cell responses. It is intriguing to determine whether the selection pressure on the S gene differs between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses due to the host shift from nonhuman animals to humans. Here, we show that the S gene, particularly the S1 region, has experienced positive selection in both SARS-CoV-2 and other coronaviruses. Although the S1 N-terminal domain exhibits signals of positive selection in the pairwise comparisons in all four coronavirus genera, positive selection is primarily detected in the S1 C-terminal domain (the receptor-binding domain) in the ongoing evolution of SARS-CoV-2, possibly owing to the change in host settings and the widespread natural infection and SARS-CoV-2 vaccination in humans.


Assuntos
COVID-19 , Animais , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Vacinas contra COVID-19 , Mamíferos/metabolismo
11.
Small ; 20(13): e2307333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37967329

RESUMO

Reducing the dark current of photodetectors is an important strategy for enhancing the detection sensitivity, but hampered by the manufacturing cost due to the need for controlling the complex material composition and processing intricate interface. This study reports a new single-component photochromic semiconductor, [(HDMA)4(Pb3Br10)(PhSQ)2]n (1, HDMA = dimethylamine cation, PhSQ = 1-(4-sulfophenyl)-4,4'-bipyridinium), by introducing a redox-active monosubstituted viologen zwitterion into inorganic semiconducting skeleton. It features yellow to green coloration after UV irradiation with the sharply dropping intrinsic conductivity of 14.6-fold, and the photodetection detection sensitivity gain successfully doubles. The reason of decreasing conductivity originates from the increasing the band gap of the inorganic semiconducting component and formation of Frenkel excitons with strong Coulomb interactions, thereby decreasing the concentration of thermally excited intrinsic carriers.

12.
Small ; : e2401742, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721985

RESUMO

There is a growing demand for thermal management materials in electronic fields. Aerogels have attracted interest due to their extremely low density and extraordinary thermal insulation properties. However, the application of aerogels is limited by high production costs and the requirement that aerogel structures not be load-bearing. In this study, mullite-reinforced SiC-based aerogel composite (MR-SiC AC) is prepared through 3D printing combined with in situ growth of SiC nanowires in post processing. The fabricated MR-SiC AC not only has ultra-low thermal conductivity (0.021 W K m-1) and high porosity (90.0%), but also a high Young's modulus (24.4 MPa) and high compressive strength (1.65 MPa), both exceeding the measurements of existing resilient aerogels by an order of magnitude. These properties make MR-SiC AC an ideal solution for the precision thermal management of lightweight structures having complex geometry for functional devices.

13.
Small ; 20(12): e2307557, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946707

RESUMO

Although zinc metal anode is promising for zinc-ion batteries (ZIBs) owing to high energy density, its reversibility is significantly obstructed by uncontrolled dendrite growth and parasitic reactions. Optimizing electrolytes is a facile yet effective method to simultaneously address these issues. Herein, 2-(N-morpholino)ethanesulfonic acid (MES), a pH buffer as novel additive, is initially introduced into conventional ZnSO4 electrolyte to ensure a dendrite-free zinc anode surface, enabling a stable Zn/electrolyte interface, which is achieved by controlling the solvated sheath through H2O poor electric double layer (EDL) derived from zwitterionic groups. Moreover, this zwitterionic additive can balance localized H+ concentration of the electrolyte system, thus preventing parasitic reactions in damaging electrodes. DFT calculation proves that the MES additive has a strong affinity with Zn2+ and induces uniform deposition along (002) orientation. As a result, the Zn anode in MES-based electrolyte exhibits exceptional plating/stripping lifespan with 1600 h at 0.5 mA cm-2 (0.5 mAh cm-2) and 430 h at 5.0 mA cm-2 (5.0 mAh cm-2) while it maintains high coulombic efficiency of 99.8%. This work proposes an effective and facile approach for designing dendrite-free anode for future aqueous Zn-based storage devices.

14.
Small ; 20(5): e2304424, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37726235

RESUMO

Peptide assemblies are promising nanomaterials, with their properties and technological applications being highly hinged on their supramolecular architectures. Here, how changing the chirality of the terminal charged residues of an amphiphilic hexapeptide sequence Ac-I4 K2 -NH2 gives rise to distinct nanostructures and supramolecular handedness is reported. Microscopic imaging and neutron scattering measurements show thin nanofibrils, thick nanofibrils, and wide nanotubes self-assembled from four stereoisomers. Spectroscopic and solid-state nuclear magnetic resonance (NMR) analyses reveal that these isomeric peptides adopt similar anti-parallel ß-sheet secondary structures. Further theoretical calculations demonstrate that the chiral alterations of the two C-terminal lysine residues cause the formation of diverse single ß-strand conformations, and the final self-assembled nanostructures and handedness are determined by the twisting direction and degree of single ß-strands. This work not only lays a useful foundation for the fabrication of diverse peptide nanostructures by manipulating the chirality of specific residues but also provides a framework for predicting the supramolecular structures and handedness of peptide assemblies from single molecule conformations.


Assuntos
Lateralidade Funcional , Nanoestruturas , Peptídeos/química , Nanoestruturas/química , Isomerismo , Estrutura Secundária de Proteína
15.
J Virol ; 97(10): e0071423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37735152

RESUMO

IMPORTANCE: Although Micropterus salmoides rhabdovirus (MSRV) causes serious fish epidemics worldwide, the detailed mechanism of MSRV entry into host cells remains unknown. Here, we comprehensively investigated the mechanism of MSRV entry into epithelioma papulosum cyprinid (EPC) cells. This study demonstrated that MSRV enters EPC cells via a low pH, dynamin-dependent, microtubule-dependent, and clathrin-mediated endocytosis. Subsequently, MSRV transports from early endosomes to late endosomes and further into lysosomes in a microtubule-dependent manner. The characterization of MSRV entry will further advance the understanding of rhabdovirus cellular entry pathways and provide novel targets for antiviral drug against MSRV infection.


Assuntos
Bass , Rhabdoviridae , Animais , Rhabdoviridae/metabolismo , Bass/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Endocitose , Dinaminas/metabolismo , Microtúbulos/metabolismo , Clatrina/metabolismo , Concentração de Íons de Hidrogênio , Internalização do Vírus
16.
J Transl Med ; 22(1): 644, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982507

RESUMO

BACKGROUND: Genetic disorders often manifest as abnormal fetal or childhood development. Copy number variations (CNVs) represent a significant genetic mechanism underlying such disorders. Despite their importance, the effectiveness of clinical exome sequencing (CES) in detecting CNVs, particularly small ones, remains incompletely understood. We aimed to evaluate the detection of both large and small CNVs using CES in a substantial clinical cohort, including parent-offspring trios and proband only analysis. METHODS: We conducted a retrospective analysis of CES data from 2428 families, collected from 2018 to 2021. Detected CNV were categorized as large or small, and various validation techniques including chromosome microarray (CMA), Multiplex ligation-dependent probe amplification assay (MLPA), and/or PCR-based methods, were employed for cross-validation. RESULTS: Our CNV discovery pipeline identified 171 CNV events in 154 cases, resulting in an overall detection rate of 6.3%. Validation was performed on 113 CNVs from 103 cases to assess CES reliability. The overall concordance rate between CES and other validation methods was 88.49% (100/113). Specifically, CES demonstrated complete consistency in detecting large CNV. However, for small CNVs, consistency rates were 81.08% (30/37) for deletions and 73.91% (17/23) for duplications. CONCLUSION: CES demonstrated high sensitivity and reliability in CNV detection. It emerges as an economical and dependable option for the clinical CNV detection in cases of developmental abnormalities, especially fetal structural abnormalities.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Doenças Genéticas Inatas , Humanos , Variações do Número de Cópias de DNA/genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Reprodutibilidade dos Testes , Feminino , Valor Preditivo dos Testes , Masculino , Estudos Retrospectivos
17.
Nat Mater ; 22(10): 1182-1188, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37592031

RESUMO

Since the first discovery of the fatigue phenomenon in the late 1830s, efforts to fight against fatigue failure have continued. Here we report a fatigue resistance phenomenon in nano-TiB2-decorated AlSi10Mg enabled by additive manufacturing. This fatigue resistance mechanism benefits from the three-dimensional dual-phase cellular nanostructure, which acts as a strong volumetric nanocage to prevent localized damage accumulation, thus inhibiting fatigue crack initiation. The intrinsic fatigue strength limit of nano-TiB2-decorated AlSi10Mg was proven to be close to its tensile strength through the in situ fatigue tests of a defect-free microsample. To demonstrate the practical applicability of this mechanism, printed bulk nano-TiB2-decorated AlSi10Mg achieved fatigue resistance more than double those of other additive manufacturing Al alloys and surpassed those of high-strength wrought Al alloys. This strategy of additive-manufacturing-assisted nanostructure engineering can be extended to the development of other dual-phase fatigue-resistant metals.

18.
J Autoimmun ; 146: 103235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696926

RESUMO

Soluble components secreted by Tfh cells are critical for the germinal center responses. In this study, we investigated whether Tfh cells could regulate the B-cell response by releasing small extracellular vesicles (sEVs). Our results showed that Tfh cells promote B-cell differentiation and antibody production through sEVs and that CD40L plays a crucial role in Tfh-sEVs function. In addition, increased Tfh-sEVs were found in mice with collagen-induced arthritis (CIA). Adoptive transfer of Tfh cells significantly exacerbated the severity of CIA; however, the effect of Tfh cells on exacerbating the CIA process was significantly diminished after inhibiting sEVs secretion. Moreover, the levels of plasma Tfh-like-sEVs and CD40L expression on Tfh-like-sEVs in RA patients were significantly higher than those in healthy subjects. In summary, Tfh cell-derived sEVs can enhance the B-cell response, and exacerbate the procession of autoimmune arthritis.


Assuntos
Artrite Experimental , Linfócitos B , Vesículas Extracelulares , Células T Auxiliares Foliculares , Animais , Artrite Experimental/imunologia , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Camundongos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Humanos , Células T Auxiliares Foliculares/imunologia , Masculino , Artrite Reumatoide/imunologia , Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Transferência Adotiva , Ligante de CD40/metabolismo , Ligante de CD40/imunologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Índice de Gravidade de Doença , Feminino
19.
Opt Express ; 32(10): 16970-16982, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858891

RESUMO

Laser-induced plasma micromachining (LIPMM) is an advanced technology that utilizes the plasma generated from laser breakdown to remove material, thereby facilitating the fabrication of microstructures. This paper explores the use of LIPMM on 304 stainless steel surfaces parallel to the laser beam in different solutions, focusing on the impact of the liquid environment on the machining process. It presents a theoretical analysis of the material removal mechanisms unique to this orientation and experimentally investigates how water, a salt solution, and ethanol affect plasma shockwave characteristics. Notably, the plasma shockwave in the salt solution demonstrates the most significant peak pressure and energy, enhancing the micromachining efficiency. These findings suggest that varying the liquid environment can significantly influence LIPMM's effectiveness, offering potential improvements in precision and control. This study broadens the understanding of LIPMM applications, especially in orientations not commonly explored, and opens new possibilities for advanced micromachining techniques in various industrial applications.

20.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724987

RESUMO

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Assuntos
Cardiomiopatias Diabéticas , Dinaminas , Células Endoteliais , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Células Cultivadas , Circulação Coronária , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/etiologia , Modelos Animais de Doenças , Dinaminas/metabolismo , Dinaminas/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/enzimologia , Células Endoteliais/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa