Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biodegradation ; 35(4): 439-449, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38261083

RESUMO

Most microbiologically influenced corrosion (MIC) studies focus on the threat of pinhole leaks caused by MIC pitting. However, microbes can also lead to structural failures. Tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide mitigated the microbial degradation of mechanical properties of X80 steel pipeline by Desulfovibrio ferrophilus (IS5 strain), a very corrosive sulfate reducing bacterium. It was found that 100 ppm (w/w) THPS added to the enriched artificial seawater (EASW) culture medium before incubation resulted in 2.8-log reduction in sessile cell count after a 7-d incubation at 28 °C under anaerobic conditions, leading to 94% uniform corrosion rate reduction (from 1.3 to 0.07 mm/a), and 84% pitting corrosion rate reduction (from 0.70 to 0.11 mm/a). The X80 dogbone coupon incubated with 100 ppm THPS for 7 d suffered 3% loss in ultimate tensile strain and 0% loss in ultimate tensile strength compared with the abiotic control in EASW. In comparison, the no-treatment X80 dogbone coupon suffered losses of 13% in ultimate tensile strain and 6% in ultimate tensile stress, demonstrating very good THPS efficacy.


Assuntos
Biodegradação Ambiental , Desulfovibrio , Desinfetantes , Aço , Aço/química , Corrosão , Desulfovibrio/metabolismo , Desulfovibrio/efeitos dos fármacos , Desinfetantes/farmacologia , Resistência à Tração , Carbono
2.
Sci Total Environ ; 939: 173613, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38815822

RESUMO

Riboflavin (RF), as a common electron mediator that can accelerate extracellular electron transfer (EET), is usually used as a probe to confirm EET-microbiologically influenced corrosion (MIC). However, the acceleration mechanism of RF on EET-MIC is still unclear, especially the effect on gene expression in bacteria. In this study, a 13-mer antimicrobial peptide E6 and tetrakis hydroxymethyl phosphonium sulfate (THPS) were used as new tools to investigate the acceleration mechanism of RF on Fe0-to-microbe EET in corrosion of EH36 steel caused by Pseudomonas aeruginosa. 60 min after 20 ppm (v/v) THPS and 20 ppm THPS & 100 nM E6 were injected into P. aeruginosa 1 and P. aeruginosa 2 (two glass bottles containing P. aeruginosa with different treatments) at the 3-d incubation, respectively, P. aeruginosa 1 and P. aeruginosa 2 had a similar planktonic cell count, whereas the sessile cell count in P. aeruginosa 1 was 1.3 log higher than that in P. aeruginosa 2. After the 3-d pre-growth and subsequent 7-d incubation, the addition of 20 ppm (w/w) RF increased the weight loss and maximum pit depth of EH36 steel in P. aeruginosa 1 by 0.7 mg cm-2 and 4.1 µm, respectively, while only increasing those in P. aeruginosa 2 by 0.4 mg cm-2 and 1.7 µm, respectively. This suggests that RF can be utilized by P. aeruginosa biofilms since the corrosion rate should be elevated by the same value if it only acts on the planktonic cells. Furthermore, the EET capacity of P. aeruginosa biofilm was enhanced by RF because the protein expression of cytochrome c (Cyt c) gene in sessile cells was significantly increased in the presence of RF, which accelerated EET-MIC by P. aeruginosa against EH36 steel.


Assuntos
Pseudomonas aeruginosa , Riboflavina , Aço , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Corrosão , Transporte de Elétrons/efeitos dos fármacos , Biofilmes/efeitos dos fármacos
3.
Bioelectrochemistry ; 149: 108310, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36283192

RESUMO

The effect of methanogenic archaea (Methanococcus maripaludis) on corrosion behavior of 316L stainless steel under different concentrations of organic electron donor (acetate) was investigated. The results showed that M. maripaludis can survive by utilizing 316L SS as an alternative energy source. The extracellular electron transfer from 316L SS relies on redox-active substances secreted by M. maripaludis. Corrosion of 316L SS is promoted along with decrease of acetate concentration. M. maripaludis causes severe pitting corrosion of 316L SS in the absence of acetate due to that more redox-active substances are secreted, which has little relationship with the M. maripaludis biofilm.


Assuntos
Elétrons , Aço Inoxidável , Corrosão , Biofilmes , Água do Mar
4.
Bioelectrochemistry ; 154: 108526, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37523801

RESUMO

In this study, a 13-mer antimicrobial peptide (RRWRIVVIRVRRC) named by E6 was used as an enhancer of a green biocide to mitigate the biocorrosion of EH36 ship steel. Results show that a low concentration of E6 (100 nM) alone was no-biocidal and could not resist the Desulfovibrio vulgaris adhesion on the EH36 steel surface. However, E6 enhanced the bactericidal effect of tetrakis hydroxymethyl phosphonium sulfate (THPS). When E6 and THPS were both added to the bacteria and steel system, both the sessile D. vulgaris cells and biocorrosion rate of EH36 steel decreased significantly. Compared with the 80 ppm THPS alone treatment, the combination of 100 nM E6 + 80 ppm THPS led to an extra 1.6-log reduction in the sessile cell count. Fewer sessile D. vulgaris cells led to a lower extracellular electron transfer (EET) rate, directly resulting in 78% and 83% decreases in weight loss and pit depth of EH36 steel, respectively. E6 saved more than 50% of THPS dosage in this work to achieve a similar biocorrosion mitigation effect on EH36 steel.


Assuntos
Desinfetantes , Desinfetantes/farmacologia , Aço , Navios , Biofilmes , Bactérias , Corrosão
5.
Bioelectrochemistry ; 151: 108377, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36731176

RESUMO

The microbial corrosion of marine structural steels (09CrCuSb low alloy steel (LAS) and Q235 carbon steel (CS)) in Desulfovibrio vulgaris medium and Pseudomonas aeruginosa medium based on seawater was investigated. In the D. vulgaris medium, the weight loss and maximum pit depth of 09CrCuSb LAS were 0.59 and 0.56 times as much as those of Q235 CS, respectively. Meanwhile, in the P. aeruginosa medium, the values were 0.53 and 0.67 times, respectively. Compared to Q235 CS, 09CrCuSb LAS contains more alloy elements (Cr, Ni, Cu, Al and Sb), which led to obvious inhibition of sessile bacteria growth but had no effect on planktonic bacteria. The number of live sessile cells on the 09CrCuSb LAS surface was 23.4 % and 26.9 % of that on the Q235 CS surface in the D. vulgaris medium and P. aeruginosa medium, respectively. Fewer sessile cells on the steel surface led to a lower extracellular electron transfer (EET) rate so that less corrosion occurred. In addition, the combined effect of alloying elements on grain refinement and passive film formation also improved the anti-corrosion property of the steels.


Assuntos
Ligas , Aço , Aço/química , Ligas/farmacologia , Elétrons , Biofilmes , Transporte de Elétrons , Pseudomonas aeruginosa/fisiologia , Carbono/química
6.
Bioelectrochemistry ; 140: 107824, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33934051

RESUMO

The corrosion behavior of EH40 steel in seawater enriched with Methanococcus maripaludis was investigated through electrochemical methods and surface analysis techniques. The results revealed that the hydrogenotrophic M. maripaludis strain can utilize acetate as an alternative energy source. Corrosion of EH40 steel is initially inhibited, but prolonged exposure with the methanogen leads to an eventual corrosion propagation. During the early stage of immersion in M. maripaludis culture medium, the formation of a protective corrosion products film inhibits EH40 steel corrosion. The presence of M. maripaludis promotes both anodic and cathodic reactions of EH40 steel in the late stage of exposure. Surface analyses revealed that pitting corrosion is closely related to uneven distribution of M. maripaludis biofilm on EH40 steel surface.


Assuntos
Mathanococcus/fisiologia , Água do Mar/química , Água do Mar/microbiologia , Aço/química , Biofilmes , Corrosão , Eletroquímica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa