Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cerebellum ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472628

RESUMO

Responding to burst stimulation of parallel fibers (PFs), cerebellar Purkinje neurons (PNs) generate a convolved synaptic response displaying a fast excitatory postsynaptic current (EPSCFast) followed by a slow EPSC (EPSCSlow). The latter is companied with a rise of intracellular Ca2+ and critical for motor coordination. The genesis of EPSCSlow in PNs results from activation of metabotropic type 1 glutamate receptor (mGluR1), oligomerization of stromal interaction molecule 1 (STIM1) on the membrane of endoplasmic reticulum (ER) and opening of transient receptor potential canonical 3 (TRPC3) channels on the plasma membrane. Neuronal nitric oxide synthase (nNOS) is abundantly expressed in PFs and granule neurons (GNs), catalyzing the production of nitric oxide (NO) hence regulating PF-PN synaptic function. We recently found that nNOS/NO regulates the morphological development of PNs through mGluR1-regulated Ca2+-dependent mechanism. This study investigated the role of nNOS/NO in regulating EPSCSlow. Electrophysiological analyses showed that EPSCSlow in cerebellar slices of nNOS knockout (nNOS-/-) mice was significantly larger than that in wildtype (WT) mice. Activation of mGluR1 in cultured PNs from nNOS-/- mice evoked larger TRPC3-channel mediated currents and intracellular Ca2+ rise than that in PNs from WT mice. In addition, nNOS inhibitor and NO-donor increased and decreased, respectively, the TRPC3-current and Ca2+ rise in PNs. Moreover, the NO-donor effectively decreased TRPC3 currents in HEK293 cells expressing WT STIM1, but not cells expressing a STIM1 with cysteine mutants. These novel findings indicate that nNOS/NO inhibits TRPC3-containig channel mediated cation influx during EPSCSlow, at least in part, by S-nitrosylation of STIM1.

2.
Cerebellum ; 22(6): 1200-1215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36402869

RESUMO

The cerebellum is a major site of endocannabinoid (eCB) production and signaling. The predominant eCB within the cerebellum, 2-arachidonoylglycerol (2-AG), is produced by a metabotropic glutamate receptor type 1 (mGluR1)-initiated signaling cascade within Purkinje neurons (PNs). 2-AG retrogradely stimulates cannabinoid 1 receptors (CB1Rs) located on presynaptic terminals. The activated CB1R decreases neurotransmitter release and leads to the production of nitric oxide (NO), a gaseous molecule. Recently, our group discovered that during development in mice lacking neuronal nitric oxide synthase (nNOS-/-), PNs display an excitotoxic phenotype associated with overactivated mGluR1. Considering the importance of mGluR1 in 2-AG synthesis, the present study explored the role of nNOS-derived NO in regulating the eCB pathway within the cerebella of wildtype (WT) and nNOS-/- mice at postnatal day 7 (PD7), 2 weeks (2 W), and 7 weeks (7 W). Our analysis showed that diacylglycerol lipase α, the enzyme that catalyzes 2-AG production, was elevated at early postnatal ages, and followed by elevated levels of 2-AG in nNOS-/- cerebella compared to WT. CB1R expression in nNOS-/- cerebella was upregulated at PD7 but decreased at 2 W and 7 W when compared to age-matched WT mice cerebella. Importantly, treating organotypic nNOS-/- cerebellar slice cultures with an NO-donor-attenuated CB1R levels after 7 days in vitro. In addition, expression of the eCB hydrolases fatty acid amide hydrolase and monoacylglycerol lipase were significantly downregulated in nNOS-/- cerebella compared to WT cerebella at 7 W. Together, these results reveal a novel role for nNOS/NO in regulating eCB signaling in the cerebellum.


Assuntos
Cerebelo , Endocanabinoides , Camundongos , Animais , Endocanabinoides/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Cerebelo/metabolismo , Células de Purkinje/fisiologia , Transmissão Sináptica/fisiologia , Óxido Nítrico
3.
Int J Med Sci ; 20(6): 702-708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213671

RESUMO

This study aimed to investigate the possible association between nasopharyngeal carcinoma (NPC) and following open angle glaucoma (OAG). A retrospective research applying the National Health Insurance Research Database (NHIRD) of Taiwan was conducted with a follow up period from January 1, 2000 to December 31, 2016. There were 4184 and 16736 participants that selected and categorized into the NPC and non-NPC groups after exclusion. The major outcome of our study was the development of OAG according to diagnostic codes, exam and managements. The Cox proportional hazard regression was employed to estimate the adjusted hazard ratio (aHR) and 95% confidence interval (CI) of OAG between the two groups. In this study, a numbers of 151 and 513 OAG episodes occurred in the NPC and non-NPC groups and the NPC population showed a significantly higher incidence of OAG compared to the non-NPC population in multivariable analysis (aHR: 1.293, 95% CI: 1.077-1.551, p = 0.0057). Besides, the cumulative probability of OAG was significantly higher in the NPC group than that in the non-NPC population (p = 0.0041). About other risk factor for OAG, age older than 40 years old, diabetes mellitus and persistent steroid usage were related to OAG occurrence (all p < 0.05). In conclusion, the NPC may be an independent risk factor of following OAG development.


Assuntos
Glaucoma de Ângulo Aberto , Neoplasias Nasofaríngeas , Humanos , Adulto , Estudos de Coortes , Estudos Retrospectivos , Glaucoma de Ângulo Aberto/epidemiologia , Glaucoma de Ângulo Aberto/etiologia , Glaucoma de Ângulo Aberto/diagnóstico , Carcinoma Nasofaríngeo/epidemiologia , Fatores de Risco , Incidência , Neoplasias Nasofaríngeas/epidemiologia
4.
Glia ; 70(5): 858-874, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35006609

RESUMO

Bergmann glia (BG) predominantly use glutamate/aspartate transporters (GLAST) for glutamate uptake in the cerebellum. Recently, nitric oxide (NO) treatment has been shown to upregulate GLAST function and increase glutamate uptake in vitro. We previously discovered that neuronal nitric oxide synthase knockout (nNOS-/- ) mice displayed structural and functional neuronal abnormalities in the cerebellum during development, in addition to previously reported motor deficits. Although these developmental deficits have been identified in the nNOS-/- cerebellum, it is unknown whether BG morphology and GLAST expression are also affected in the absence of nNOS in vivo. This study is the first to characterize BG morphology and GLAST expression during development in nNOS-/- mice using immunohistochemistry and western blotting across postnatal development. Results showed that BG in nNOS-/- mice exhibited abnormal morphology and decreased GLAST expression compared with wildtype (WT) mice across postnatal development. Treating ex vivo WT cerebellar slices with the NOS inhibitor L-NAME decreased GLAST expression while treating nNOS-/- slices with the slow-release NO-donor NOC-18 increased GLAST expression when compared with their respective controls. In addition, treating primary BG isolated from WT mice with the selective nNOS inhibitor 7N decreased the membrane expression of GLAST and influx of Ca2+ /Na+ , while treating nNOS-/- BG with SNAP increased the membrane expression of GLAST and Ca2+ /Na+ influx. Moreover, the effects of SNAP on GLAST expression and Ca2+ /Na+ influx in nNOS-/- BG were significantly reduced by a PKG inhibitor. Together, these results reveal a novel role for nNOS/NO signaling in BG development, regulated by a PKG-mediated mechanism.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Ácido Glutâmico , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Ácido Aspártico , Cerebelo/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo
5.
Nitric Oxide ; 108: 28-39, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418057

RESUMO

Calcium is a critical secondary messenger in microglia. In response to inflammation, microglia mobilize intracellular calcium and increase the expression of inducible nitric oxide synthase (iNOS), which produces nitric oxide (NO). This study set to explore whether NO regulates intracellular calcium dynamics through transient receptor potential (TRP) channels in primary wildtype (WT) and iNOS knockout (iNOS-/-) microglia, and the BV2 microglial cell line using calcium imaging and voltage-clamp recordings. Our results demonstrated that application of the NO-donor SNAP induced a biphasic calcium response in naïve murine microglia. Specifically, phase I was characterized by a rapid decline in calcium influx that was attenuated by pretreatment of the store operated calcium channel (SOCC) inhibitor 2APB, while phase II presented as a slow calcium influx that was abolished by pretreatment with the TRP vanilloid type 2 (TRPV2) channel inhibitor tranilast. Importantly, in the presence of a protein kinase G (PKG) inhibitor, the SNAP-mediated calcium decline in phase I persisted while the calcium influx in phase II was abolished. Application of thapsigargin to activate SOCCs caused a calcium influx through a nonselective cation conductance in BV2 microglia, which was abruptly attenuated by SNAP. Importantly, iNOS-/- microglia displayed a significantly larger calcium influx though SOCCs while expressing less stromal interaction molecule 1, Orai1, and TRP canonical type 1 and 3 mRNA, when compared to WT microglia. Together, these results demonstrate that NO signaling restricts calcium influx through SOCCs independent of PKG signaling and increases calcium influx through TRPV2 channels in a PKG-dependent mechanism in microglia.


Assuntos
Cálcio/metabolismo , Microglia/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Animais , Canais de Cálcio/metabolismo , Linhagem Celular , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/genética , Canais de Cátion TRPV/metabolismo
6.
Cerebellum ; 19(4): 510-526, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32270464

RESUMO

Nitric oxide (NO), specifically derived from neuronal nitric oxide synthase (nNOS), is a well-established regulator of synaptic transmission in Purkinje neurons (PNs), governing fundamental processes such as motor learning and coordination. Previous phenotypic analyses showed similar cerebellar structures between neuronal nitric oxide null (nNOS-/-) and wild-type (WT) adult male mice, despite prominent ataxic behavior within nNOS-/- mice. However, a study has yet to characterize PN molecular structure and their excitatory inputs during development in nNOS-/- mice. This study is the first to explore morphological abnormalities within the cerebellum of nNOS-/- mice, using immunohistochemistry and immunoblotting. This study sought to examine PN dendritic morphology and the expression of metabotropic glutamate receptor type 1 (mGluR1), vesicular glutamate transporter type 1 and 2 (vGluT1 and vGluT2), stromal interaction molecule 1 (STIM1), and calpain-1 within PNs of WT and nNOS-/- mice at postnatal day 7 (PD7), 2 weeks (2W), and 7 weeks (7W) of age. Results showed a decrease in PN dendritic branching at PD7 in nNOS-/- cerebella, while aberrant dendritic spine formation was noted in adult ages. Total protein expression of mGluR1 was decreased in nNOS-/- cerebella across development, while vGluT2, STIM1, and calpain-1 were significantly increased. Ex vivo treatment of WT slices with NOS inhibitor L-NAME increased calpain-1 expression, whereas treating nNOS-/- cerebellar slices with NO donor NOC-18 decreased calpain-1. Moreover, mGluR1 agonist DHPG increased calpain-1 in WT, but not in nNOS-/- slices. Together, these results indicate a novel role for nNOS/NO signaling in PN development, particularly by regulating an mGluR1-initiated calcium signaling mechanism.


Assuntos
Dendritos/metabolismo , Neurogênese/fisiologia , Óxido Nítrico/metabolismo , Células de Purkinje/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Cerebelo/citologia , Cerebelo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo I/metabolismo , Células de Purkinje/citologia , Transdução de Sinais/fisiologia
7.
Brain Behav Immun ; 88: 791-801, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32434046

RESUMO

Microglia express muscarinic G protein-coupled receptors (GPCRs) that sense cholinergic activity and are activated by acetylcholine to potentially regulate microglial functions. Knowledge about how distinct types of muscarinic GPCR signaling regulate microglia function in vivo is still poor, partly due to the fact that some of these receptors are also present in astrocytes and neurons. We generated mice expressing the hM3Dq Designer Receptor Exclusively Activated by Designer Drugs (DREADD) selectively in microglia to investigate the role of muscarinic M3Gq-linked signaling. We show that activation of hM3Dq using clozapine N-oxide (CNO) elevated intracellular calcium levels and increased phagocytosis of FluoSpheres by microglia in vitro. Interestingly, whereas acute treatment with CNO increased synthesis of cytokine mRNA, chronic treatment attenuated LPS-induced cytokine mRNA changes in the brain. No effect of CNO on cytokine expression was observed in DREADD-negative mice. Interestingly, CNO activation of M3Dq in microglia was able to attenuate LPS-mediated decrease in social interactions. These results suggest that chronic activation of M3 muscarinic receptors (the hM3Dq progenitor) in microglia, and potentially other Gq-coupled GPCRs, can trigger an inflammatory-like response that preconditions microglia to decrease their response to further immunological challenges. Our results indicate that hM3Dq can be a useful tool to modulate neuroinflammation and study microglial immunological memory in vivo, which may be applicable for manipulations of neuroinflammation in neurodegenerative and psychiatric diseases.


Assuntos
Clozapina , Microglia , Acetilcolina , Animais , Clozapina/farmacologia , Masculino , Camundongos , Neurônios , Receptores Acoplados a Proteínas G , Transdução de Sinais
8.
Nitric Oxide ; 94: 125-134, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759970

RESUMO

Microglia population is primarily determined by a finely-regulated proliferation process during early development of the central nervous system (CNS). Nitric oxide (NO) is known to inhibit proliferation in numerous cell types. However, how NO signaling regulates microglia proliferation remains elusive. Using wildtype (WT) and inducible nitric oxide synthase knockout (iNOS-/-) mice, this study investigated the role and underlying mechanisms of iNOS/NO signaling in microglia proliferation. Here we reported that iNOS-/- mice displayed significantly more BrdU-labeled proliferating microglia in the cortex than that in WT mice at postnatal day 10. Compared to microglia isolated from WT mouse cortex, significantly more iNOS-/- microglia displayed the specific cell-cycle markers Ki67 and phospho-histone H3 (pH3) in their nuclei. In addition, treating WT microglia with the NOS inhibitor LNAME drastically increased the percentage of cells expressing Ki67 and pH3, whereas treating iNOS-/- microglia with NOC18, a slow-release NO-donor, significantly decreased the percentage of microglia expressing the two cell-cycle markers. Moreover, inhibition of protein kinase-G (PKG) in WT microglia increased the proportion of microglia expressing Ki67 and pH3, whereas activation of PKG signaling using 8Br-cGMP in iNOS-/- microglia significantly decreased the fraction of microglia displaying Ki67 and pH3. Interestingly, in the presence of a PKG inhibitor, NOC18 increased the quantity of iNOS-/- microglia expressing Ki67 and pH3. Together, these results indicate that basal activity of iNOS/NO signaling impedes microglial cell-cycle progression and attenuates proliferation through activation of the cGMP-PKG pathway. However, NO increases microglia cell-cycle progression in the absence of cGMP-PKG signaling.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Microglia/metabolismo , Óxido Nítrico/metabolismo , Animais , Proliferação de Células , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais
9.
Glia ; 67(12): 2294-2311, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31453646

RESUMO

Microglia phagocytosis is critical for central nervous system development, and dysregulation of phagocytosis may contribute to a variety of neurological disorders. During initial stages of phagocytosis, microglia display increased nitric oxide (NO) production via inducible nitric oxide synthase (iNOS) activity and amplified calcium entry through transient receptor potential vanilloid type 2 (TRPV2) channels. The present study investigated the regulatory role of iNOS/NO signaling in microglial phagocytosis and TRPV2 channel activation using phagocytosis assay, calcium imaging, patch clamp electrophysiology, immunocytochemistry, and immunoblot assays. Results showed that primary microglia from iNOS-knockout (iNOS-/- ) mice exhibited substantial deficits in phagocytic capacity and TRPV2 channel activity relative to wild-type (WT) controls. Specifically, iNOS-/- microglia displayed a lower level of TRPV2 protein localized on the plasma membrane (PM) without any significant change in the mRNA levels of Fc-gamma receptors and TRPV2. In addition, iNOS-/- microglia, unlike their WT controls, failed to elicit a calcium influx in response to application of the TRPV2-agonist 2-aminoethoxydiphenyl borate (2APB). Importantly, the phagocytic capacity and the PM expression and activity of TRPV2 in iNOS-/- microglia were largely corrected by pretreatment with NO-donors. Accordingly, the 2APB-evoked calcium influx and the PM expression of TRPV2 in WT microglia were significantly decreased by selective inhibition of iNOS, protein kinase-G (PKG), or phosphoinositide-3-kinase (PI3K), respectively. Together, results from this study indicated that iNOS/NO signaling upregulates microglial phagocytosis and increases TRPV2 trafficking to the PM via PKG/PI3K dependent pathway(s).


Assuntos
Canais de Cálcio/biossíntese , Membrana Celular/metabolismo , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico/metabolismo , Fagocitose/fisiologia , Canais de Cátion TRPV/biossíntese , Animais , Canais de Cálcio/genética , Membrana Celular/genética , Células Cultivadas , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Canais de Cátion TRPV/genética , Regulação para Cima/fisiologia
10.
Cell Immunol ; 332: 7-23, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30017085

RESUMO

In response to micro-environmental cues such as microbial infections or T-helper 1 and 2 (TH1 and TH2) cytokines, macrophages (Mϕs) develop into M1- or M2-like phenotypes. Phenotypic polarization/activation of Mϕs are also essentially regulated by autocrine signals. Type-A γ-aminobutyric acid receptor (GABAAR)-mediated autocrine signaling is critical for phenotypic differentiation and transformation of various cell types. The present study explored whether GABAAR signaling regulates lung Mϕ (LMϕ) phenotypic activation under M1/TH1 and M2/TH2 environments. Results showed that GABAAR subunits were expressed by primary LMϕ of mice and the mouse Mϕ cell line RAW264.7. The expression levels of GABAAR subunits in mouse LMϕs and RAW264.7 cells decreased or increased concurrently with classical (M1) or alternative (M2) activation, respectively. Moreover, activation or blockade of GABAARs distinctively influenced the phenotypic characteristics of Mϕ. These results suggested that microenvironments leading to LMϕ phenotypic polarization concurrently modulates autocrine GABA signaling and its role in Mϕ activation.


Assuntos
Comunicação Autócrina/fisiologia , Ativação de Macrófagos/fisiologia , Macrófagos Alveolares/metabolismo , Transdução de Sinais/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Células RAW 264.7 , Receptores de GABA/metabolismo , Células Th1/metabolismo , Células Th2/metabolismo
11.
J Appl Toxicol ; 38(3): 341-350, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29044621

RESUMO

Alcoholic liver disease (ALD) is a consequence of heavy and prolonged alcohol consumptions. We previously demonstrated a hepatic gamma-aminobutyric acid (GABA) signaling system that protects the liver from toxic injury. The present study was designed to investigate the role of the hepatic GABA signaling system in the process of acute ethanol exposure-induced liver injury. Our results showed that the expression of GABA synthesizing enzyme glutamic acid decarboxylase and type A GABA receptor (GABAA R) subunits was upregulated in ethanol-treated mice compared with saline-treated controls. Remarkably, pretreatment of mice with GABA (1.5 mg kg-1 body weight, intraperitoneal injection [i.p.]) or with the GABAA R agonist muscimol (1.2 mg kg-1 body weight, i.p.) protected the liver against ethanol toxicity and improved liver function, whereas pretreatment of mice with the GABAA R antagonist bicuculline (2.0 mg kg-1 body weight, i.p.) worsened the liver function. Further analyses suggest that GABAA R-mediated signaling protects the liver from ethanol injury by, at least partially, inhibiting the IRE1α-ASK1-JNK pro-apoptotic pathway in hepatocytes in the process of ethanol-induced endoplasmic reticulum stress response.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Ácido gama-Aminobutírico/metabolismo , Doença Aguda , Adulto , Animais , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/toxicidade , Glutamato Descarboxilase/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/prevenção & controle , MAP Quinase Quinase Quinase 5/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de GABA-A/metabolismo , Transdução de Sinais , Regulação para Cima , Adulto Jovem
12.
Diabetologia ; 60(6): 1033-1042, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28280900

RESUMO

AIMS/HYPOTHESIS: This study aimed to elucidate the mechanism of increased proliferation of alpha cells in recent-onset type 1 diabetes. Pancreatic beta cells express GAD and produce γ-aminobutyric acid (GABA), which inhibits alpha cell secretion of glucagon. We explored the roles of GABA in alpha cell proliferation in conditions corresponding to type 1 diabetes in a mouse model and in vitro. METHODS: Type 1 diabetes was induced by injecting the mice with streptozotocin (STZ). Some of the STZ-injected mice were treated with GABA (10 mg/kg daily) for 12 days. Isolated pancreatic islets were treated with STZ or STZ together with GABA for 2 days. The effects of GABA treatment on STZ-induced alpha cell proliferation in vivo and in vitro were assessed. The effect of muscimol, a GABA receptor agonist, on αTC1-6 cell proliferation was also examined. RESULTS: STZ injection substantially decreased levels of GAD, GABA and insulin in pancreatic beta cells 12 h after injection; this was followed by an upsurge of phosphorylated mechanistic target of rapamycin (p-mTOR) in the alpha cells at day 1, and a significant increase in alpha cell mass at day 3. Treating STZ-injected mice with GABA largely restored the immunodetectable levels of insulin and GAD in the beta cells and significantly decreased the number of aldehyde dehydrogenase 1 family, member A3 (ALDH1a3)-positive cells, alpha cell mass and hyperglucagonaemia. STZ treatment also increased alpha cell proliferation in isolated islets, which was reversed by co-treatment with GABA. Muscimol, together with insulin, significantly lowered the level of cytosolic Ca2+ and p-mTOR, and decreased the proliferation rate of αTC1-6 cells. CONCLUSIONS/INTERPRETATION: GABA signalling critically controls the alpha cell population in pancreatic islets. Low intraislet GABA may contribute to alpha cell hyperplasia in early type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia , Animais , Glicemia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Agonistas de Receptores de GABA-A/farmacologia , Glucagon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Muscimol/farmacologia
13.
Am J Physiol Gastrointest Liver Physiol ; 312(3): G208-G218, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979827

RESUMO

γ-Aminobutyric acid (GABA) is produced by various cells through the catalytic activity of glutamic acid decarboxylase (GAD). Activation of type-A GABA receptor (GABAAR) inhibits stem cell proliferation but protects differentiated cells from injures. The present study investigated hepatic GABA signaling system and the role of this system in liver physiology and pathophysiology. RT-PCR and immunoblot assays identified GAD and GABAAR subunits in rat livers and in HepG2 and Clone 9 hepatocytes. Patch-clamp recording detected GABA-induced currents in Clone 9 hepatocytes and depolarization in WITT cholangiocytes. The function of hepatic GABA signaling system in rats was examined using models of d-galactosamine (GalN)-induced acute hepatocytic injury in vivo and in vitro. The expression of GAD increased whereas GABAAR subunits decreased in the liver of GalN-treated rats. Remarkably, treating rats with GABA or the GABAAR agonist muscimol, but not the GABABR agonist baclofen, protected hepatocytes against GalN toxicity and improved liver function. In addition, muscimol treatment decreased the formation of pseudobile ductules and the enlargement of hepatocytic canaliculi in GalN-treated rats. Our results revealed that a complex GABA signaling system exists in the rat liver. Activation of this intrahepatic GABAergic system protected the liver against toxic injury.NEW & NOTEWORTHY Auto- and paracrine GABAergic signaling systems exist in the rat hepatocytes and cholangiocytes. Activation of GABA signaling protects liver function from d-galactosamine injury by reducing toxic impairment of hepatocytes and by decreasing cholangiocyte proliferation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Baclofeno/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Agonistas dos Receptores de GABA-B/farmacologia , Galactosamina , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Masculino , Muscimol/farmacologia , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/farmacologia
14.
J Cell Sci ; 126(Pt 6): 1517-30, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23418359

RESUMO

To study the physiological role of a single microRNA (miRNA), we generated transgenic mice expressing the miRNA precursor miR-17 and found that the mature miR-17-5p and the passenger strand miR-17-3p were abundantly expressed. We showed that mature miR-17-5p and passenger strand miR-17-3p could synergistically induce the development of hepatocellular carcinoma. The mature miR-17-5p exerted this function by repressing the expression of PTEN. In contrast, the passenger strand miR-17-3p repressed expression of vimentin, an intermediate filament with the ability to modulate metabolism, and GalNT7, an enzyme that regulates metabolism of liver toxin galactosamine. Hepatocellular carcinoma cells, HepG2, transfected with miR-17 formed larger tumors with more blood vessels and less tumor cell death than mock-treated cells. Expression of miR-17 precursor modulated HepG2 proliferation, migration, survival, morphogenesis and colony formation and inhibited endothelial tube formation. Silencing of PTEN, vimentin or GalNT7 with their respective siRNAs enhanced proliferation and migration. Re-expressing these molecules reversed their roles in proliferation, migration and tumorigenesis. Further experiments indicated that these three molecules do not interact with each other, but appear to function in different signaling pathways. Our results demonstrated that a mature miRNA can function synergistically with its passenger strand leading to the same phenotype but by regulating different targets located in different signaling pathways. We anticipate that our assay will serve as a helpful model for studying miRNA regulation.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Vimentina/metabolismo , Animais , Carcinogênese/genética , Repressão Enzimática/genética , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , N-Acetilgalactosaminiltransferases/genética , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais , Transgenes/genética , Ensaio Tumoral de Célula-Tronco , Vimentina/genética , Polipeptídeo N-Acetilgalactosaminiltransferase
15.
FASEB J ; 27(3): 907-19, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23180826

RESUMO

This study was designed to explore the role of versican in the development of hepatocellular carcinoma (HCC). Ectopic expression of the versican 3'-untranslated region (3'-UTR) was studied as a competitive endogenous RNA for regulating miRNA functions. We used this approach to modulate the expression of versican and its related proteins in 3'-UTR transgenic mice and in the liver cancer cell line HepG2, stably transfected with the 3'-UTR or a control vector. We demonstrated that transgenic mice expressing the versican 3'-UTR developed HCC and increased expression of versican isoforms V0 and V1. HepG2 cells transfected with versican 3'-UTR displayed increased proliferation, survival, migration, invasion, colony formation, and enhanced endothelial cell growth, but decreased apoptosis. We found that versican 3'-UTR could bind to miRNAs miR-133a, miR-199a*, miR-144, and miR-431 and also interacted with CD34 and fibronectin. As a consequence, expression of versican, CD34, and fibronectin was up-regulated by ectopic transfection of the versican 3'-UTR, which was confirmed in HepG2 cells and in transgenic mice as compared with wild-type controls. Transfection with siRNAs targeting the versican 3'-UTR abolished the effects of the 3'-UTR. Taken together, these results demonstrate that versican V0 and V1 isoforms play important roles in HCC development and that versican mRNAs compete with endogenous RNAs in regulating miRNA functions.


Assuntos
Regiões 3' não Traduzidas , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/metabolismo , Versicanas/biossíntese , Animais , Apoptose/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Neoplásico/genética , Versicanas/genética
16.
Nat Med ; 13(7): 862-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17589520

RESUMO

Gamma-aminobutyric acid (GABA) is an important neurotransmitter that, through the subtype A GABA receptor (GABAAR), induces inhibition in the adult brain. Here we show that an excitatory, rather than inhibitory, GABAergic system exists in airway epithelial cells. Both GABAARs and the GABA synthetic enzyme glutamic acid decarboxylase (GAD) are expressed in pulmonary epithelial cells. Activation of GABAARs depolarized these cells. The expression of GAD in the cytosol and GABAARs in the apical membranes of airway epithelial cells increased markedly when mice were sensitized and then challenged with ovalbumin, an approach for inducing allergic asthmatic reactions. Similarly, GAD and GABAARs in airway epithelial cells of humans with asthma increased after allergen inhalation challenge. Intranasal application of selective GABAAR inhibitors suppressed the hyperplasia of goblet cells and the overproduction of mucus induced by ovalbumin or interleukin-13 in mice. These findings show that a previously unknown epithelial GABAergic system has an essential role in asthma.


Assuntos
Asma/metabolismo , Muco/metabolismo , Receptores de GABA/metabolismo , Mucosa Respiratória/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina
17.
Proc Natl Acad Sci U S A ; 108(8): 3216-21, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21300902

RESUMO

Cystic fibrosis is caused by impaired ion transport due to mutated cystic fibrosis transmembrane conductance regulator, accompanied by elevated activity of the amiloride-sensitive epithelial Na(+) channel (ENaC). Here we show that knockout of the ubiquitin ligase Nedd4L (Nedd4-2) specifically in lung epithelia (surfactant protein C-expressing type II and Clara cells) causes cystic fibrosis-like lung disease, with airway mucus obstruction, goblet cell hyperplasia, massive inflammation, fibrosis, and death by three weeks of age. These effects of Nedd4L loss are likely caused by enhanced ENaC function, as reflected by increased ENaC protein levels, increased lung dryness at birth, amiloride-sensitive dehydration of lung explants, and elevated ENaC currents in primary alveolar type II cells analyzed by patch clamp recordings. Moreover, the lung defects were rescued with administration of amiloride into the lungs of young knockout pups via nasal instillation. Our results therefore suggest that the ubiquitin ligase Nedd4L can suppress the onset of cystic fibrosis symptoms by inhibiting ENaC in lung epithelia.


Assuntos
Fibrose Cística/etiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Epitélio/enzimologia , Deleção de Genes , Pulmão/citologia , Ubiquitina-Proteína Ligases/genética , Amilorida/farmacologia , Animais , Animais Recém-Nascidos , Fibrose Cística/patologia , Bloqueadores do Canal de Sódio Epitelial , Canais Epiteliais de Sódio/análise , Camundongos , Ubiquitina-Proteína Ligases Nedd4 , Técnicas de Patch-Clamp
18.
Proc Natl Acad Sci U S A ; 108(28): 11692-7, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709230

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease characterized by insulitis and islet ß-cell loss. Thus, an effective therapy may require ß-cell restoration and immune suppression. Currently, there is no treatment that can achieve both goals efficiently. We report here that GABA exerts antidiabetic effects by acting on both the islet ß-cells and immune system. Unlike in adult brain or islet α-cells in which GABA exerts hyperpolarizing effects, in islet ß-cells, GABA produces membrane depolarization and Ca(2+) influx, leading to the activation of PI3-K/Akt-dependent growth and survival pathways. This provides a potential mechanism underlying our in vivo findings that GABA therapy preserves ß-cell mass and prevents the development of T1D. Remarkably, in severely diabetic mice, GABA restores ß-cell mass and reverses the disease. Furthermore, GABA suppresses insulitis and systemic inflammatory cytokine production. The ß-cell regenerative and immunoinhibitory effects of GABA provide insights into the role of GABA in regulating islet cell function and glucose homeostasis, which may find clinical application.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Células Secretoras de Insulina/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/biossíntese , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Hiperglicemia/prevenção & controle , Imunossupressores/farmacologia , Mediadores da Inflamação/metabolismo , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/fisiologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Ácido gama-Aminobutírico/fisiologia
19.
Virus Res ; 344: 199366, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38548137

RESUMO

Gamma-aminobutyric acid (GABA) signals in various non-neuronal cells including hepatocytes and some immune cells. Studies, including ours, show that type A GABA receptors (GABAARs)-mediated signaling occurs in macrophages regulating tissue-specific functions. Our recent study reveals that activation of GABAARs in liver macrophages promotes their M2-like polarization and increases HBV replication in mice. This short article briefly summarizes the GABA signaling system in macrophages and discusses potential mechanisms by which GABA signaling promotes HBV replication.


Assuntos
Hepatite B , Macrófagos , Receptores de GABA-A , Transdução de Sinais , Replicação Viral , Ácido gama-Aminobutírico , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Ácido gama-Aminobutírico/metabolismo , Hepatite B/virologia , Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/genética , Fígado/virologia , Fígado/metabolismo , Macrófagos/virologia , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética
20.
Hippocampus ; 23(12): 1198-211, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23804429

RESUMO

The cytokine transforming growth factor ß1 (TGFß1) is chronically upregulated in several neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jacob disease, amyotrophic lateral sclerosis and multiple sclerosis, and following stroke. Although previous studies have shown that TGFß1 may be neuroprotective, chronic exposure to elevated levels of this cytokine may contribute to disease pathology on its own. In order to study the effects of chronic exposure to TGFß1 in isolation, we used transgenic mice that over-express a constitutively active porcine TGFß1 in astrocytes. We found that TGFß1 over-expression altered brain structure, with the most pronounced volumetric increases localized to the hippocampus. Within the dentate gyrus (DG) of the hippocampus, increases in granule cell number and astrocyte size were responsible for volumetric expansion, with the increased granule cell number primarily related to a marked reduction in death of new granule cells generated in adulthood. Finally, these cumulative changes in DG microstructure and macrostructure were associated with the age-dependent emergence of spatial learning deficits in TGFß1 over-expressing mice. Together, our data indicate that chronic upregulation of TGFß1 negatively impacts hippocampal structure and, even in the absence of disease, impairs hippocampus-dependent learning.


Assuntos
Hipocampo/metabolismo , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/patologia , Percepção Espacial/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Fatores Etários , Animais , Apoptose/genética , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/patologia , Hipocampo/ultraestrutura , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/ultraestrutura , Tempo de Reação/genética , Suínos , Fator de Crescimento Transformador beta1/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa