Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Macromol Rapid Commun ; : e2400087, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688322

RESUMO

The collapse or folding of an individual polymer chain into a nanoscale particle gives rise to single-chain nanoparticles (SCNPs), which share a soft nature with biological protein particles. The precise control of their properties, including morphology, internal structure, size, and deformability, are a long-standing and challenging pursuit. Herein, a new strategy based on amphiphilic alternating copolymers for producing SCNPs with ultrasmall size and uniform structure is presented. SCNPs are obtained by folding the designed alternating copolymer in N,N-dimethylformamide (DMF) and fixing it through a photocatalyzed cycloaddition reaction of anthracene units. Molecular dynamics simulation confirms the solvophilic outer corona and solvophobic inner core structure of SCNPs. Furthermore, by adjusting the length of PEG units, precise control over the mean size of SCNPs is achieved within the range of 2.8 to 3.9 nm. These findings highlight a new synthetic strategy that enables enhanced control over morphology and internal structure while achieving ultrasmall and uniform size for SCNPs.

2.
Phys Chem Chem Phys ; 26(7): 6180-6188, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300128

RESUMO

The application of liquid crystal technology typically relies on the precise control of molecular orientation at a surface or interface. This control can be achieved through a combination of morphological and chemical methods. Consequently, variations in constrained boundary flexibility can result in a diverse range of phase behaviors. In this study, we delve into the self-assembly of liquid crystals within elastic spatial confinement by using the Gay-Berne model with the aid of molecular dynamics simulations. Our findings reveal that a spherical elastic shell promotes a more regular and orderly alignment of liquid crystals compared to a hard shell. Moreover, during the cooling process, the hard-shell confined system undergoes an isotropic-smectic phase transition. In contrast, the phase behavior within the spherical elastic shell closely mirrors the isotropic-nematic-smectic phase transition observed in bulk systems. This indicates that the orientational arrangement of liquid crystals and the deformations induced by a flexible interface engage in a competitive interplay during the self-assembly process. Importantly, we found that phase behavior could be manipulated by altering the flexibility of the confined boundaries. This insight offers a fresh perspective for the design of innovative materials, particularly in the realm of liquid crystal/polymer composites.

3.
Small ; 19(31): e2205291, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36635000

RESUMO

Fabricating polymer electrolyte membranes (PEMs) simultaneously with high ion conductivity and selectivity has always been an ultimate goal in many membrane-integrated systems for energy conversion and storage. Constructing broader ion-conducting channels usually enables high-efficient ion conductivity while often bringing increased crossover of other ions or molecules simultaneously, resulting in decreased selectivity. Here, the ultra-small carbon dots (CDs) with the selective barriers are self-assembled within proton-conducting channels of PEMs through electrostatic interaction to enhance the proton conductivity and selectivity simultaneously. The functional CDs regulate the nanophase separation of PEMs and optimize the hydration proton network enabling higher-efficient proton transport. Meanwhile, the CDs within proton-conducting channels prevent fuel from permeating selectively due to their repelling and spatial hindrance against fuel molecules, resulting in highly enhanced selectivity. Benefiting from the improved conductivity and selectivity, the open-circuit voltage and maximum power density of the direct methanol fuel cell (DMFC) equipped with the hybrid membranes raised by 23% and 93%, respectively. This work brings new insight to optimize polymer membranes for efficient and selective transport of ions or small molecules, solving the trade-off of conductivity and selectivity.

4.
J Chem Phys ; 159(12)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-38127373

RESUMO

How to fabricate perpendicularly oriented domains (PODs) of lamellar and cylinder phases in block copolymer thin films remains a major challenge. In this work, via a coarse-grained molecular dynamics simulation study, we report a solvent evaporation strategy starting from a mixed solution of A-b-B-type diblock copolymers (DBCs) and single-chain nanoparticles (SCNPs) with the same composition, which is capable of spontaneously generating PODs in drying DBC films induced by the interface segregation of SCNPs. The latter occurs at both the free surface and substrate and, consequently, neutralizes the interface selectivity of distinct blocks in DBCs, leading to spontaneous formation of PODs at both interfaces. The interface segregation of SCNPs is related to the weak solvophilicity of the internal cross-linker units. A mean-field theory calculation demonstrates that the increase in the chemical potential of SCNPs in the bulk region drives their interface segregation along with solvent evaporation. We believe that such a strategy can be useful in regulating the PODs of DBC films in practical applications.

5.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38063227

RESUMO

Molecular dynamics simulations were used to analyze the mechanical properties and failure processes of poly(p-phenylene-terephthalamide) (PPTA), poly(p-phenylene-benzimidazole-terephthalamide) (PBIA), PBIA-PPTA (formed by 1:1 copolymerization of PPTA and PBIA), and poly(p-phenylene-benzobisoxazole) (PBO) crystals at different strain rates and temperatures. The failure stress and strain were found to be linear with the temperature and logarithmic strain rate. Moreover, based on the kinetic theory of fracture and the comprehensive simulation results, we formulated a model that describes the failure stress of the aforementioned crystals under varying strain rates and temperatures. Through the analysis of the failure process, we found that in PPTA, PBIA, and PBIA-PPTA crystals, the bond failure probability is correlated with the strain rate and temperature. The examination of bond lengths and angles unveiled that bonds with larger initial aligning angles are more susceptible to failure during the strain process. Intriguingly, the stretching process induced a conformational change in the PBO molecular chain, leading to a deviation from the linear relation in its stress-strain curve.

6.
J Am Chem Soc ; 144(49): 22651-22661, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36411055

RESUMO

Biological systems employ non-equilibrium self-assembly to create ordered nanoarchitectures with sophisticated functions. However, it is challenging to construct artificial non-equilibrium nanoassemblies due to lack of control over assembly dynamics and kinetics. Herein, we design a series of linear polymers with different side groups for further coordination-driven self-assembly based on shape-complementarity. Such a design introduces a main-chain confinement which effectively slows down the assembly process of side groups, thus allowing us to monitor the real-time evolution of lychee-like nanostructures. The function related to the non-equilibrium nature is further explored by performing photothermal conversion study. The ability to observe and capture non-equilibrium states in this supramolecular system will enhance our understanding of the thermodynamic and kinetic features as well as functions of living systems.


Assuntos
Nanoestruturas , Polímeros , Polímeros/química , Nanoestruturas/química , Termodinâmica , Cinética
7.
Soft Matter ; 19(1): 128-136, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36477470

RESUMO

Polar groups have long been recognized to greatly influence the glass transition temperature (Tg) of polymers, but understanding the underlying physical mechanism remains a challenge. Here, we study the glass formation of ring-opening metathesis polymerization (ROMP) copolymers containing polar groups by employing all-atom molecular dynamics simulations. We show that although the number of hydrogen bonds (NHB) and the cohesive energy density increase linearly as the content of polar groups (fpol) increases, the Tg of ROMP copolymers increases with the increase of fpol in a nonlinear fashion, and tends to plateau for sufficiently high fpol. Importantly, we find that the increase rate of Gibbs free energy for HB breaking gradually slows down with the increase of fpol, indicating that the HB is gradually stabilized. Therefore, Tg is jointly determined by NHB and the strength of HBs in the system, while the latter dominates. Although NHB increases linearly with increasing fpol, the HB strength increases slowly with increasing fpol, which leads to a decreasing rate of increase in Tg.

8.
Chem Rev ; 120(13): 5798-5877, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32292036

RESUMO

Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.

9.
J Chem Phys ; 156(21): 214902, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35676131

RESUMO

Nanoparticle clusters are promising candidates for developing functional materials. However, it is still a challenging task to fabricate them in a predictable and controllable way, which requires investigation of the possible mechanisms underlying cluster formation at the nanoscale. By constructing Markov state models (MSMs) at the microstate level, we find that for highly dispersed particles to form a highly aggregated cluster, there are multiple coexisting pathways, which correspond to direct aggregation, or pathways that need to pass through partially aggregated, intermediate states. Varying the range of attraction between nanoparticles is found to significantly affect pathways. As the attraction range becomes narrower, compared to direct aggregation, some pathways that need to pass through partially aggregated intermediate states become more competitive. In addition, from MSMs constructed at the macrostate level, the aggregation rate is found to be counterintuitively lower with a lower free-energy barrier, which is also discussed.


Assuntos
Nanopartículas , Entropia
10.
Soft Matter ; 17(24): 5897-5906, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34037067

RESUMO

We use coarse-grained molecular dynamics simulations to study the self-assembly behavior of polyoxometalate (POM) nanoparticles (NPs) decorated with mobile polymer ligands under melt conditions. We demonstrate that due to the mobile nature of the grafted ligands on the NP surface, NPs have the ability to expose a part of their surfaces, leading to a block-copolymer-like self-assembly behavior. The exposed NP surface serves as one block and the grafted ligand polymers as another. This system has a strong ability to self-assemble into long-range ordered structures such as block copolymers due to large incompatibility between POM and ligand polymers, i.e., POM NPs can form lamellar, cylindrical, and spherical structures, which are consistent with previous experimental results. More importantly, these ordered structures are on the sub-10 nm scale, which is an important requirement for many applications. At low graft density, we find a new inverse-cylindrical structure formation where polymers form cylinders and POMs form a continuous network structure. A full self-assembly phase diagram is constructed which illustrates rules to manipulate the self-assembly structures of NPs decorated with mobile polymer ligands. We hope that these computational results will be useful for the new design of nanostructures with improved optical or electronic functions.

11.
J Chem Phys ; 154(14): 144904, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33858165

RESUMO

Dissipative self-assembly, a ubiquitous type of self-assembly in biological systems, has attracted a lot of attention in recent years. Inspired by nature, dissipative self-assembly driven by periodic external fields is often adopted to obtain controlled out-of-equilibrium steady structures and materials in experiments. Although the phenomena in dissipative self-assembly have been discovered in the past few decades, fundamental methods to describe dynamical self-assembly processes and responsiveness are still lacking. Here, we develop a theoretical framework based on the equations of motion and Floquet theory to reveal the dynamic behavior changing with frequency in the periodic external field driven self-assembly. Using the dissipative particle dynamics simulation method, we then construct a block copolymer model that can self-assemble in dilute solution to confirm the conclusions from the theory. Our theoretical framework facilitates the understanding of dynamic behavior in a periodically driven process and provides the theoretical guidance for designing the dissipative conditions.

12.
J Chem Phys ; 154(18): 184903, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241008

RESUMO

The composition and structure of a membrane determine its functionality and practical application. We study the supramolecular polymeric membrane prepared by supramolecular emulsion interfacial polymerization (SEIP) on the oil-in-water droplet via the computer simulation method. The factors that may influence its structure and properties are investigated, such as the degree of polymerization and molecular weight distribution (MWD) of products in the polymeric membranes. We find that the SEIP can lead to a higher total degree of polymerization as compared to the supramolecular interfacial polymerization (SIP). However, the average chain length of products in the SEIP is lower than that of the SIP due to its obvious interface curvature. The stoichiometric ratio of reactants in two phases will affect the MWD of the products, which further affects the performance of the membranes in practical applications, such as drug release rate and permeability. Besides, the MWD of the product by SEIP obviously deviates from the Flory distribution as a consequence of the curvature of reaction interface. In addition, we obtain the MWD for the emulsions whose size distribution conforms to the Gaussian distribution so that the MWD may be predicted according to the corresponding emulsion size distribution. This study helps us to better understand the controlling factors that may affect the structure and properties of supramolecular polymeric membranes by SEIP.

13.
J Chem Phys ; 155(5): 054901, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364327

RESUMO

By using coarse-grained molecular dynamics simulations, we have investigated the structure and dynamics of supercooled single-chain cross-linked nanoparticle (SCNP) melts having a range of cross-linking degrees ϕ. We find a nearly linear increase in glass-transition temperature (Tg) with increasing ϕ. Correspondingly, we have also experimentally synthesized a series of polystyrene-based SCNPs and have found that the measured Tg estimated from differential scanning calorimetry is qualitatively consistent with the trend predicted by our simulation estimates. Experimentally, an increase in Tg as large as ΔTg = 61 K for ϕ = 0.36 is found compared with their linear chain counterparts, indicating that the changes in dynamics with cross-links are quite appreciable. We attribute the increase in Tg to the enlarged effective hard-core volume and the corresponding reduction in the free volume of the polymer segments. Topological constraints evidently frustrate the local packing. In addition, the introduction of intra-molecular cross-linking bonds slows down the structural relaxation and simultaneously enhances the local coupling motion on the length scales within SCNPs. Consequently, a more pronounced dynamical heterogeneity (DH) is observed for larger ϕ, as quantified by measuring the dynamical correlation length through the four-point susceptibility parameter, χ4. The increase in DH is directly related to the enhanced local cooperative motion derived from intra-molecular cross-linking bonds and structural heterogeneity derived from the cross-linking process. These results shed new light on the influence of intra-molecular topological constraints on the segmental dynamics of polymer melts.

14.
Macromol Rapid Commun ; 41(24): e1900655, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32134543

RESUMO

Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by intramolecular crosslinking of isolated single polymer chains. Syntheses of such SCNPs usually need to be performed in a dilute solution. In such a condition, the bonding probability of the two active crosslinking units at a short contour distance along the chain backbone is much higher than those which are far away from each other. Such a reaction condition often results in local spheroidization and, therefore, the formation of loosely packed structures. How to inhibit the local spheroidization and improve the compactness of SCNPs is thus a major challenge for the syntheses of SCNPs. In this study, computer simulations are performed and the fact that a precollapse of the polymer chain conformation in a cosolvent condition can largely improve the probability of the crosslinking reactions at large contour distances is demonstrated, favoring the formations of closely packed globular structures. As a result, the formed SCNPs can be more spherical and have higher compactness than those fabricated in ultradilute good solvent solution in a conventional way. It is believed this simulation work can provide a insight into the effective syntheses of SCNPs with spherical conformations and high compactness.


Assuntos
Nanopartículas , Polímeros , Simulação por Computador , Solventes
15.
Phys Chem Chem Phys ; 22(33): 18703-18710, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32803209

RESUMO

Efficient production of cyclic polymers has been a hot topic in the past few decades. In this work, we found that an adsorptive porous template with an appropriate size has the capability to accelerate the ring closure of a linear polymer chain in a dilute solution with a higher yield. The restricted pore provides a confined space and the effect of its characteristics, such as pore size, shape and adsorption strength on cyclization time, is systematically studied by using dissipative particle dynamics simulations. As a prerequisite of cyclization in confinement, the entry process of linear precursors has been studied as well. Total production time is governed by a tradeoff between the size effect caused by decreasing the size of the pore and the adsorption of the pore. The strong size effect suppresses polymer entry but accelerates cyclization. The stronger adsorption promotes polymer entry but decelerates cyclization. According to our defined total production time, a small spherical confinement with strong adsorption results in a shorter total production time of cyclic polymers compared to that in free solution. If chain cyclization is permitted during its entering the confinement, the interplay between steric hindrance caused by pore size and adsorption provides an additional 'virtual' confinement at the boundary between confinement and free solution. In this case, an optimal cyclization time is observed with an appropriate adsorption strength under small confinement. Our results provide useful guidance for designing suitable porous templates for producing cyclic polymers with high efficiency.

16.
Phys Chem Chem Phys ; 22(9): 5347-5354, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32096506

RESUMO

The dynamic process of synthesizing Janus nanoparticles (JNPs) at a water/oil two-phase interface using a grafting-from reaction is investigated via dissipative particle dynamics simulations. We find that the interfacial tension, the initial monomer concentration, and the reaction probability can greatly influence the microscopic characteristics of JNP structure. It is difficult to synthesize a symmetric JNP with an equal volume ratio between hydrophilic and hydrophobic parts by grafting-from methods unless the physical chemical conditions in the two phases are strictly symmetric, and there is always a disordered domain on the JNP at a two immiscible solvents interface. Interestingly, for certain routes for synthesizing JNPs with a grafting-from method, the higher interfacial tension between the water and oil phases may enhance the degree of disorder of the grafted chains. The asymmetric initial monomer concentration in solution and the reaction probability can be used to control the syntheses of asymmetric JNPs.

17.
Phys Chem Chem Phys ; 22(20): 11400-11408, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32374336

RESUMO

We study the interfacial structure and dynamics of a polymer nanocomposite (PNC) composed of octaaminophenyl polyhedral oligomeric silsesquioxane (OAPS) and poly(2-vinylpyridine) (P2VP) by performing full atomistic molecular dynamics simulations. There are eight aminophenyl groups grafted on the surface of the OAPS particle and the particle has a size comparable to the Kuhn segment of P2VP. These aminophenyl groups can form hydrogen bonds (HBs) with pyridine rings from surrounding P2VP chains. We found that OAPS can form ∼2 HBs on average with surrounding polymer chains. The effect of the HBs is investigated in detail by either switching on or off these HBs in our simulation. By analyzing the interfacial static packing structure and dynamic properties, we demonstrate that the system has an ∼1 nm interface width, similar to the OAPS particle size. We also found that HBs can prevent the further penetration of polymers into the inner zone (grafting layer) of the OAPS, and therefore keep the P2VP chains in the outer layer (>1 nm), remaining bulk-like, which is well consistent with experimental results. In addition, we found that NP diffusion is coupled to the absorbed polymer chains, which also dramatically slows down the diffusion of polymer segments in return. The core-shell model in which the NP and absorbed polymers diffuse as a single object is validated here at the full atomistic level. These results provide atomistic insights into the unique structure and dynamics in the small attractive NP-polymer interfacial region. We hope these results will be helpful for the understanding of peculiar phenomena in attractive polymer nanocomposites containing small NPs.

18.
Phys Chem Chem Phys ; 22(28): 15976-15985, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32632434

RESUMO

Polyethylene oxide (PEO) and poly(propylene oxide) (PPO), especially their tri-block copolymers PEO-PPO-PEO (poloxamers), have a broad range of applications in biotechnology and medical science. Understanding their specific interactions with biomembranes is the key to unveil the unique features of poloxamers either as membrane-healing or membrane pore-forming agents. Based on the coarse-graining convention of the MARTINI force field and the big multipole water (BMW) model, which has a three charged site topology and can reproduce the correct dipole moment of four-water clusters, we generated coarse-grained (CG) models with analytical and numerical potentials for PEO and PPO homopolymers and poloxamers in dilute solution. The effective bonded interaction potentials between CG beads were determined from the probability distributions of bond lengths, angles and dihedrals that are determined from atomistic simulations. The nonbonded interaction parameters were fine-tuned to reproduce the conformational properties of atomistic PEO and PPO homopolymers and poloxamers via extensive CG simulations of PEO and PPO homopolymers and poloxamers in a BMW water environment. The reported CG models provide a promising framework for a comprehensive understanding of the microstructural, conformational, and dynamic properties of poloxamers and their delicate interactions with other species in an explicit water environment.

19.
J Chem Phys ; 152(9): 094905, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33480731

RESUMO

The inclusion of nanoparticles (NPs) into solvated polymer brushes (PBs) provides a path for designing novel nanocomposites and a multifunctional surface for wide applications. Despite intensive study over the years, the correlation between the structural properties of NPs (or PBs) and the NP-PB interactions is still to be well unveiled. Here, we present molecular dynamics simulations with the umbrella sampling method to systematically investigate the interaction between NPs and PBs, via calculating the free energy cost (Uins, associated with the inclusion of NPs into PBs) as a function of a series of factors, such as brush grafting density (ρg), grafted polymer chain architecture, NPs' size, NPs' surface properties, and NPs' shape and surface structure, as well as the solvent quality. Our results show that at a fixed NP size, the inclusion free energy approximately scales with the osmotic pressure (Π) of PBs under good solvent conditions [Uins∼Π(ρg)∼ρg 3/2], regardless of the NPs' shape and surface properties. Once the radius of the NP (RNP) is varied, a scaling law, Uins∼RNP 3, can be obtained for NPs deeply inserted in swollen PBs with a high grafting density. While for shallow inclusions, a surface tension correction of the form ∼RNP 2 plays a role. Further studies reveal that Θ and poor solvents will weaken the osmotic pressure effects of PBs and reversely enhance the surface tension effects due to the increased NP-brush repulsion. Our simulation results verify previous theoretical perspectives that the Uins can be approximated by the sum of the volume and surface contributions from the osmotic pressure Π and surface tension γ (Uins∼ΠRNP 3+γRNP 2). Our work not only helps us to understand the applicability of previous theories on the NP-PB system but also reveals the key factors that impact the NP-PB interaction in a series of probable conditions, which may provide valuable guidelines for designing and engineering novel nanomaterials based on functional NPs and PBs.

20.
J Am Chem Soc ; 141(24): 9500-9503, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31179694

RESUMO

Although π-π interactions have been studied for several decades, the quantification of the strength of π-π interactions in a macromolecule remains a big challenge. Herein, we utilize single-molecule atomic force microscopy and steered molecular dynamics simulations to study the π-π interactions in polystyrene (PS). It is found that in high vacuum, the single-chain mechanics of PS differs largely from that of polyethylene (PE). Accordingly, the strength of intrachain π-π interactions in PS is estimated to be 0.7 kcal/(mol stack), which is much lower than that in a small-molecule system (benzene dimer, 2-3 kcal/(mol stack)). Further study shows that in high vacuum, there are two types of π-π stacking in the single PS chain, i.e., the every-other-moiety (E) type and the adjacent-moiety (A) type. Upon force stretching, a transition from E-type to A-type π-π stacking can be observed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa