Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 31(6): 9395-9403, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157511

RESUMO

To meet the ultra-bandwidth high-capacity communication, improve spectral efficiency and reduce the complexity of system structure, we have proposed the independent triple-sideband signal transmission system based on photonics-aided terahertz-wave (THz-wave). In this paper, we demonstrate up to 16-Gbaud independent triple-sideband 16-ary quadrature amplitude modulation (16QAM) signal transmission over 20 km standard single mode fiber (SSMF) at 0.3 THz. At the transmitter, independent triple-sideband 16QAM signals are modulated by an in-phase/quadrature (I/Q) modulator. Carrying independent triple-sideband signals optical carrier coupled with another laser to generate independent triple-sideband terahertz optical signals with a carrier frequency interval of 0.3THz. While at the receiver side, enabled by a photodetector (PD) conversion, we successfully obtain independent triple-sideband terahertz signals with a frequency of 0.3THz. Then we employ a local oscillator (LO) to drive mixer to generate intermediate frequency (IF) signal, and only one ADC is used to sample independent triple-sideband signals, digital signal processing (DSP) is finally performed to obtain independent triple-sideband signals. In this scheme, independent triple-sideband 16QAM signals is delivered over 20 km SSMF under the bit error ratio (BER) of 7% hard-decision forward-error-correction (HD-FEC) threshold of 3.8 × 10-3. Our simulation results show that the independent triple-sideband signal can further improve THz system transmission capacity and spectral efficiency. Our simplified independent triple-sideband THz system has a simple structure, high spectral efficiency, and reduced bandwidth requirements for DAC and ADC, which is a promising solution for future high-speed optical communications.

2.
J Colloid Interface Sci ; 645: 227-240, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37149997

RESUMO

The mild and rapid construction of economical, efficient and ultrastable electrodes for hydrogen production via water splitting at industrial-grade current density remains extremely challenging. Herein, a one-step mild electroless plating method is proposed to deposit cobalt phosphorus (CoP)-based species on robust nickel net (NN, denoted as Co-P@NN). The tight interfacial contact, corrosion-proof self-supporting substrate and synergistic effect of Co-P@Co-O contribute greatly to the rapid electron transport, high intrinsic activity and long-term durability in the alkaline simulated seawater (1.0 M KOH + 0.5 M NaCl). Attractively, Co-P@Co-O also achieves ultrastable catalysis for over 2880 h with negligible activity attenuation under various alkaline extreme conditions (simulated seawater, high-salt environment, domestic sewage and so on). Furthermore, this work successfully constructs a series of ternary elemental doped (Ni, S, B, Fe and so on) CoP-based catalytic electrodes for highly efficient overall seawater splitting (OSWS). This work demonstrates not only an ideal platform for the versatile strategy of mildly obtaining CoP-based electrocatalysts but also the pioneering philosophy of large-scale hydrogen production.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa