Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Pediatr ; 183(4): 1657-1665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38197962

RESUMO

The long non-coding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) level was demonstrated as involved in pediatric inflammatory bowel disease (IBD) pathogenesis. Since its antisense transcript GAS5-AS1 has never been investigated in IBD, this study aims to detect whether GAS5-AS1 and GAS5 levels are related to IBD clinical parameters and investigate their correlation in vitro. Twenty-six IBD pediatric patients were enrolled; paired inflamed and non-inflamed intestinal biopsies were collected. We evaluated GAS5 and GAS5-AS1 levels by real-time PCR. The role of GAS5 and GAS5-AS1 was assessed in vitro by transient silencing in THP1-derived macrophages. GAS5-AS1 and GAS5 levels were associated with patients' clinical parameters; GAS5-AS1 expression was downregulated in inflamed tissues and inversely correlated with disease activity. A positive correlation between GAS5-AS1 and GAS5 levels was observed in non-inflamed biopsies. On THP1-derived macrophages, a reduced amount of both GAS5-AS1 and GAS5 was observed; accordingly, matrix metalloproteinase (MMP) 9 was increased. After GAS5-AS1 silencing, a downregulation of GAS5 was found, whereas no effect was detected on GAS5-AS1 after GAS5 silencing.    Conclusion: This study provided for the first time new insights into the potential role of GAS5-AS1 in IBD. GAS5-AS1 modulates GAS5 levels in vitro and may serve as a potential IBD diagnostic biomarker. What is Known: • GAS5 is involved in regulating intestinal MMP-2 and MMP-9 in pediatric patients with IBD; • GAS5-AS1 has never been investigated in the context of IBD; • GAS5-AS1 regulates the expression of GAS5, increasing its stability in tissues and in vitro cell models of cancer. What is New: • GAS5-AS1 correlated with GAS5 and IBD clinical parameters; • GAS5-AS1 can modulate GAS5 levels in macrophages; • GAS5-AS1 may serve as potential IBD diagnostic biomarker.


Assuntos
Doenças Inflamatórias Intestinais , RNA Longo não Codificante , Humanos , Criança , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/genética , Biópsia , Biomarcadores , Colo/metabolismo
2.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825180

RESUMO

Although the introduction of antibiotics in medicine has resulted in one of the most successful events and in a major breakthrough to reduce morbidity and mortality caused by infectious disease, response to these agents is not always predictable, leading to differences in their efficacy, and sometimes to the occurrence of adverse effects. Genetic variability, resulting in differences in the pharmacokinetics and pharmacodynamics of antibiotics, is often involved in the variable response, of particular importance are polymorphisms in genes encoding for drug metabolizing enzymes and membrane transporters. In addition, variations in the human leukocyte antigen (HLA) class I and class II genes have been associated with different immune mediated reactions induced by antibiotics. In recent years, the importance of pharmacogenetics in the personalization of therapies has been recognized in various clinical fields, although not clearly in the context of antibiotic therapy. In this review, we make an overview of antibiotic pharmacogenomics and of its potential role in optimizing drug therapy and reducing adverse reactions.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/genética , Variantes Farmacogenômicos , Antibacterianos/efeitos adversos , Antibacterianos/farmacocinética , Infecções Bacterianas/tratamento farmacológico , Estudo de Associação Genômica Ampla/métodos , Antígenos HLA/genética , Humanos , Medicina de Precisão/métodos
3.
J Pediatr Gastroenterol Nutr ; 69(4): 474-479, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31149938

RESUMO

OBJECTIVES: Therapeutic drug monitoring is becoming increasingly important in clinical decision-making in children with inflammatory bowel disease (IBD). However, enzyme-linked immunosorbent assay (ELISA) assays do not allow results to be provided in real-time. We sought to compare 2 point-of-care (POC) devices for quantification of serum infliximab concentration with 2 validated ELISA assays in children with IBD. METHODS: We studied 32 serum samples from 19 children with IBD treated with infliximab. Serum samples were collected immediately before drug infusion (trough level). Infliximab was measured using 2 POC infliximab assays, Quantum Blue (POC IFX/QB) and Rida Quick (POC IFX/RQ), and 2 ELISA assays: Lisa-Tracker (used as primary reference), and Promonitor (used as second control). Intraclass correlation coefficient (ICC) was assessed for quantitative comparison. Qualitative analysis was also performed to evaluate whether POC assays would correctly classify infliximab serum according to a target window (between 3 and 7 µg/mL). RESULTS: ICC was 0.82 and 0.87 for POC IFX/QB and POC IFX/RQ with the primary reference ELISA assay, respectively; ICC between the 2 ELISA assays was 0.87. Classification of results according to therapeutic intervals showed good agreement between pairs of assays, with kappa of 0.67 and 0.80 for POC IFX/QB and POC IFX/RQ, respectively, with reference ELISA, and 0.81 between the 2 ELISAs. Accuracy of POC assays was better for drug levels <3 µg/mL. CONCLUSIONS: POC infliximab assays showed good agreement with traditional ELISA assays. POC devices may represent a viable option for real-time therapeutic drug monitoring in children treated with infliximab.


Assuntos
Fármacos Gastrointestinais/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Infliximab/uso terapêutico , Sistemas Automatizados de Assistência Junto ao Leito , Adolescente , Monitoramento de Medicamentos , Feminino , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/sangue , Humanos , Doenças Inflamatórias Intestinais/sangue , Infliximab/administração & dosagem , Infliximab/sangue , Masculino
4.
J Pediatr Gastroenterol Nutr ; 68(1): 37-44, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30211845

RESUMO

OBJECTIVES: Anti-tumor necrosis factor antibodies have led to a revolution in the treatment of inflammatory bowel diseases (IBD); however, a sizable proportion of patients does not respond to therapy. There is increasing evidence suggesting that treatment failure may be classified as mechanistic (pharmacodynamic), pharmacokinetic, or immune-mediated. Data regarding the contribution of these factors in children with IBD treated with infliximab (IFX) are still incomplete. The aim was to assess the causes of treatment failure in a prospective cohort of pediatric patients treated with IFX. METHODS: This observational study considered 49 pediatric (median age 14.4) IBD patients (34 Crohn disease, 15 ulcerative colitis) treated with IFX. Serum samples were collected at 6, 14, 22 and 54 weeks, before IFX infusions. IFX and anti-infliximab antibodies (AIA) were measured using enzyme linked immunosorbent assays. Disease activity was determined by Pediatric Crohn's Disease Activity Index or Pediatric Ulcerative Colitis Activity Index. RESULTS: Clinical remission, defined as a clinical score <10, was obtained by 76.3% of patients at week 14 and by 73.9% at week 54. Median trough IFX concentration was higher at all time points in patients achieving sustained clinical remission. IFX levels during maintenance correlated also with C-reactive protein, albumin, and fecal calprotectin. After multivariate analysis, IFX concentration at week 14 >3.11 µg/mL emerged as the strongest predictor of sustained clinical remission. AIA concentrations were correlated inversely with IFX concentrations and directly with adverse reactions. CONCLUSIONS: Most cases of therapeutic failure were associated with low serum drug levels. IFX trough levels at the end of induction are associated with sustained long-term response.


Assuntos
Anticorpos Monoclonais/sangue , Colite Ulcerativa/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Fármacos Gastrointestinais/farmacocinética , Infliximab/farmacocinética , Adolescente , Anticorpos Monoclonais/imunologia , Criança , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos , Ensaio de Imunoadsorção Enzimática , Feminino , Fármacos Gastrointestinais/imunologia , Humanos , Infliximab/imunologia , Masculino , Estudos Prospectivos , Índice de Gravidade de Doença , Falha de Tratamento
5.
Eur J Clin Pharmacol ; 75(12): 1675-1683, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31463578

RESUMO

PURPOSE: Idiopathic nephrotic syndrome (INS) is the most frequent form of childhood nephrotic syndrome. Steroids represent the best therapeutic option; however, inter-individual differences in their efficacy and side effects have been reported. To date, there is no way to predict patients' resistance and/or dependence. Alterations in the cytokine profile of INS patients might contribute to proteinuria and glomerular damage and affect drug sensitivity. METHODS: The cytokine plasma levels were measured in 21 INS children at diagnosis to investigate the association among cytokines pattern and clinical response. Patients were selected on the basis of their clinical response: 7 steroid sensitive (SS), 7 dependent (SD), and 7 resistant (SR). Significant results were then analyzed in 41 additional pediatric INS patients. RESULTS: Within the 48 cytokines analyzed, macrophage migration inhibitory factor (MIF) was a good predictor of steroid response. Indeed, SR patients showed significantly higher MIF plasma levels compared with all others (p = 0.022; OR = 4.3, 95%CI = 1.2-25.4): a cutoff concentration of MIF > 501 pg/ml significantly discriminated SR patients (sensitivity = 85.7%, specificity = 71.4%). On the contrary, SD patients showed lower MIF plasma levels compared with others (p = 0.010; OR = 0.12, 95%CI = 9.2 × 10-3-6.7 × 10-1). Significant results were confirmed in the entire cohort. CONCLUSIONS: Our comprehensive cytokine analysis indicates that assessing MIF plasma levels at diagnosis could predict response to glucocorticoids in children with INS.


Assuntos
Oxirredutases Intramoleculares/sangue , Fatores Inibidores da Migração de Macrófagos/sangue , Síndrome Nefrótica/sangue , Síndrome Nefrótica/tratamento farmacológico , Esteroides/uso terapêutico , Adolescente , Criança , Pré-Escolar , Citocinas/sangue , Resistência a Medicamentos , Feminino , Humanos , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Masculino , Síndrome Nefrótica/genética , Polimorfismo Genético , Valor Preditivo dos Testes
6.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31652976

RESUMO

BACKGROUND: The long non-coding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) seems to be involved in the regulation of mediators of tissue injury, in particular matrix metalloproteinases (MMPs), implicated in the pathogenesis of inflammatory bowel disease (IBD). We investigated the role of GAS5 in regulating MMP2 and MMP9 expression in pediatric patients with IBD and in vitro. METHODS: In total, 25 IBD patients were enrolled: For each patient paired inflamed and non-inflamed biopsies were collected. RNA was extracted and GAS5, MMP2, and MMP9 were quantified by TaqMan assay. The expression of GAS5 and MMPs was also determined in the human monocytic THP1 cells differentiated into macrophages and stimulated with lipopolysaccharide (LPS). The function of GAS5 was assessed by overexpressing the lncRNA and evaluating the MMPs levels. RESULTS: Real-time PCR results demonstrated a downregulation of GAS5 and an upregulation of both MMPs in inflamed tissues. In vitro data confirmed the trend observed in patients for the three genes: The stimulation with LPS promoted a downregulation of GAS5 while an increase of MMPs was observed. Overexpression experiments showed that higher levels of GAS5 lead to a decrease of both enzymes. CONCLUSION: These results provide new information about the role of GAS5 in IBD: The lncRNA could mediate tissue damage by modulating the expression of MMPs.


Assuntos
Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , RNA Longo não Codificante/metabolismo , Adolescente , Linhagem Celular , Criança , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , RNA Longo não Codificante/genética , Índice de Gravidade de Doença , Acetato de Tetradecanoilforbol/farmacologia
7.
Int J Mol Sci ; 19(5)2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738455

RESUMO

The aim of this research was the identification of novel pharmacogenomic biomarkers for better understanding the complex gene regulation mechanisms underpinning glucocorticoid (GC) action in paediatric inflammatory bowel disease (IBD). This goal was achieved by evaluating high-throughput microRNA (miRNA) profiles during GC treatment, integrated with the assessment of expression changes in GC receptor (GR) heterocomplex genes. Furthermore, we tested the hypothesis that differentially expressed miRNAs could be directly regulated by GCs through investigating the presence of GC responsive elements (GREs) in their gene promoters. Ten IBD paediatric patients responding to GCs were enrolled. Peripheral blood was obtained at diagnosis (T0) and after four weeks of steroid treatment (T4). MicroRNA profiles were analyzed using next generation sequencing, and selected significantly differentially expressed miRNAs were validated by quantitative reverse transcription-polymerase chain reaction. In detail, 18 miRNAs were differentially expressed from T0 to T4, 16 of which were upregulated and 2 of which were downregulated. Out of these, three miRNAs (miR-144, miR-142, and miR-96) could putatively recognize the 3’UTR of the GR gene and three miRNAs (miR-363, miR-96, miR-142) contained GREs sequences, thereby potentially enabling direct regulation by the GR. In conclusion, we identified miRNAs differently expressed during GC treatment and miRNAs which could be directly regulated by GCs in blood cells of young IBD patients. These results could represent a first step towards their translation as pharmacogenomic biomarkers.


Assuntos
Biomarcadores , Glucocorticoides/efeitos adversos , Doenças Inflamatórias Intestinais/tratamento farmacológico , MicroRNAs/genética , Adolescente , Criança , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/administração & dosagem , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Masculino , Receptores de Glucocorticoides/genética , Transcriptoma/efeitos dos fármacos
8.
Clin Exp Pharmacol Physiol ; 43(6): 602-5, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001230

RESUMO

This study evaluates the association between the long noncoding RNA GAS5 levels and the anti-proliferative effect of the glucocorticoid (GC) methylprednisolone (MP) alone and in combination with rapamycin in peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. The effect of MP, rapamycin, and MP plus rapamycin was determined in 17 healthy donors by labelling metabolically active cells with [methyl-3H] thymidine and the expression levels of GAS5 gene were evaluated by real-time RT-PCR TaqMan analysis. We confirmed a role for GAS5 in modulating GC response: poor responders presented higher levels of GAS5 in comparison with good responders. Interestingly, when PBMCs were treated with the combination of rapamycin plus MP, the high levels of GAS5 observed for each drug in the MP poor responders group decreased in comparison with rapamycin (P value = 0.0134) or MP alone (P value = 0.0193). GAS5 is involved in GC resistance and co-treatment of rapamycin with GCs restores GC effectiveness in poor responders through the downregulation of the long noncoding RNA. GAS5 could be considered a biomarker to personalize therapy and a novel therapeutic target useful for the development of new pharmacological approaches to restore GC sensitivity.


Assuntos
Glucocorticoides/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , RNA Longo não Codificante/biossíntese , Sirolimo/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Expressão Gênica , Humanos , RNA Longo não Codificante/genética
9.
WIREs Mech Dis ; 16(1): e1630, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37770042

RESUMO

Induced pluripotent stem cells (iPSCs), obtained by reprogramming different somatic cell types, represent a promising tool for the study of drug toxicities, especially in the context of personalized medicine. Indeed, these cells retain the same genetic heritage of the donor, allowing the development of personalized models. In addition, they represent a useful tool for the study of adverse drug reactions (ADRs) in special populations, such as pediatric patients, which are often poorly represented in clinical trials due to ethical issues. Particularly, iPSCs can be differentiated into any tissue of the human body, following several protocols which use different stimuli to induce specific differentiation processes. Differentiated cells also maintain the genetic heritage of the donor, and therefore are suitable for personalized pharmacological studies; moreover, iPSC-derived differentiated cells are a valuable tool for the investigation of the mechanisms underlying the physiological differentiation processes. iPSCs-derived organoids represent another important tool for the study of ADRs. Precisely, organoids are in vitro 3D models which better represent the native organ, both from a structural and a functional point of view. Moreover, in the same way as iPSC-derived 2D models, iPSC-derived organoids are appropriate personalized models since they retain the genetic heritage of the donor. In comparison to other in vitro models, iPSC-derived organoids present advantages in terms of versatility, patient-specificity, and ethical issues. This review aims to provide an updated report of the employment of iPSCs, and 2D and 3D models derived from these, for the study of ADRs. This article is categorized under: Cancer > Stem Cells and Development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Criança , Diferenciação Celular , Organoides
10.
Chem Biol Interact ; 387: 110792, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37944627

RESUMO

Thiopurine drugs are immunomodulatory antimetabolites relevant for pediatric patients characterized by dose-dependent adverse effects such as myelosuppression and hepatotoxicity, often related to inter-individual differences, involving the activity of important enzymes at the basis of their biotransformation, such as thiopurine S-methyltransferase (TPMT). Surface Enhanced Raman Scattering (SERS) spectroscopy is emerging as a bioanalytical tool and represents a valid alternative in terms of affordable costs, shorter analysis time and easier sample preparation in comparison to the most employed methods for pharmacokinetic analysis of drugs. The aim of this study is to investigate mercaptopurine and thioguanine pharmacokinetics by SERS in cell lysates of a B-lymphoblastoid cell line (NALM-6), that did (TPMT*1) or did not (MOCK) overexpress the wild-type form of TPMT as an in vitro cellular lymphocyte model to discriminate between cells with different levels of TPMT activity on the base of the amount of thioguanosine nucleotides (TGN) metabolites formed. SERS analysis of the cell lysates was carried out using SERS substrates constituted by Ag nanoparticles deposited on paper and parallel samples were used for quantification of thiopurine nucleotides with liquid chromatography-tandem mass spectrometry (LC-MS/MS). A direct SERS detection method has been set up that could be a tool to study thiopurine drug pharmacokinetics in in vitro cellular models to qualitatively discriminate between cells that do and do not overexpress the TPMT enzyme, as an alternative to other more laborious techniques. Results underlined decreased levels of TGN and increased levels of methylated metabolites when TPMT was overexpressed, both after mercaptopurine and thioguanine treatments. A strong positive correlation (Spearman's rank correlation coefficient rho = 0.96) exists between absolute quantification of TGMP (pmol/1 x 106 cells), obtained by LC-MS/MS, and SERS signal (intensity of TGN at 915 cm-1). In future studies, we aim to apply this method to investigate TPMT activity in pediatric patients' leukocytes.


Assuntos
Leucemia , Nanopartículas Metálicas , Humanos , Criança , Mercaptopurina/metabolismo , Tioguanina/metabolismo , Cromatografia Líquida , Prata , Espectrometria de Massas em Tandem , Metiltransferases , Nucleotídeos , Análise Espectral
11.
Pediatr Rheumatol Online J ; 21(1): 99, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700264

RESUMO

BACKGROUND: Tocilizumab is a humanized monoclonal antibody that acts as an IL-6 receptor antagonist. Intravenous tocilizumab is considered an option for children with anti-TNF refractory juvenile idiopathic arthritis-associated uveitis. In contrast, the potential of subcutaneous drug use with this indication is more controversial. Due to the decreased availability of intravenous tocilizumab during the COVID-19 pandemic, we started using the subcutaneous formulation of the drug in children with anti-TNF refractory uveitis. The study analyzes the serum concentration of tocilizumab and its clinical response in patients with anti-TNF refractory uveitis who started or switched to subcutaneous administration from intravenous use. METHODS: Five patients with non-infectious uveitis were treated with subcutaneous tocilizumab. Ocular inflammation was evaluated on slit lamp examination during clinical control. Serum tocilizumab concentrations were determined by ELISA. RESULTS: The mean blood concentration of tocilizumab was 61.4 µg/mL (range 2.7-137.0.), with higher values than levels recorded in adult patients with rheumatoid arthritis treated with intravenous tocilizumab. Three patients entered clinical remission. One patient developed a mild relapse and was treated with topical steroids. Only one patient did not respond to therapy. The medication was well tolerated without severe infection or other adverse events. CONCLUSION: Our results support a possible role of subcutaneous tocilizumab in anti-TNF refractory uveitis.


Assuntos
COVID-19 , Uveíte , Adulto , Humanos , Criança , Pandemias , Inibidores do Fator de Necrose Tumoral , Tratamento Farmacológico da COVID-19 , Uveíte/tratamento farmacológico , Uveíte/etiologia
12.
Life Sci Alliance ; 6(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596605

RESUMO

PACSIN2 variants are associated with gastrointestinal effects of thiopurines and thiopurine methyltransferase activity through an uncharacterized mechanism that is postulated to involve autophagy. This study aims to clarify the role of PACSIN2 in autophagy and in thiopurine cytotoxicity in leukemic and intestinal models. Higher autophagy and lower PACSIN2 levels were observed in inflamed compared with non-inflamed colon biopsies of inflammatory bowel disease pediatric patients at diagnosis. PACSIN2 was identified as an inhibitor of autophagy, putatively through inhibition of autophagosome formation by a protein-protein interaction with LC3-II, mediated by a LIR motif. Moreover, PACSIN2 resulted a modulator of mercaptopurine-induced cytotoxicity in intestinal cells, suggesting that PACSIN2-regulated autophagy levels might influence thiopurine sensitivity. However, PACSIN2 modulates cellular thiopurine methyltransferase activity via mechanisms distinct from its modulation of autophagy.


Assuntos
Doenças Inflamatórias Intestinais , Mercaptopurina , Humanos , Criança , Mercaptopurina/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Intestinos , Autofagia , Proteínas Adaptadoras de Transdução de Sinal/genética
13.
Biomed Pharmacother ; 157: 113901, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36462311

RESUMO

BACKGROUND: Thiopurine methyltransferase (TPMT) is a crucial enzyme for azathioprine biotransformation and its activity is higher in very early onset inflammatory bowel disease (VEO-IBD) patients than in adolescents with IBD (aIBD). AIMS: The aims of this pharmacoepigenetic study were to evaluate differences in peripheral blood DNA methylation of the TPMT gene and in azathioprine pharmacokinetics in patients with VEO-IBD compared to aIBD. METHODS: The association of age with whole genome DNA methylation profile was evaluated in a pilot group of patients and confirmed by a meta-analysis on 3 cohorts of patients available on the public functional genomics data repository. Effects of candidate CpG sites in the TPMT gene were validated in a larger cohort using pyrosequencing. TPMT activity and azathioprine metabolites (TGN) were measured in patients' erythrocytes by HPLC and associated with patients' age group and TPMT DNA methylation. RESULTS: Whole genome DNA methylation pilot analysis, combined with the meta-analysis revealed cg22736354, located on TPMT downstream neighboring region, as the only statistically significant CpG whose methylation increases with age, resulting lower in VEO-IBD patients compared to aIBD (median 9.6% vs 12%, p = 0.029). Pyrosequencing confirmed lower cg22736354 methylation in VEO-IBD patients (median 4.0% vs 6.0%, p = 4.6 ×10-5). No differences in TPMT promoter methylation were found. Reduced cg22736354 methylation was associated with lower TGN concentrations (rho = 0.31, p = 0.01) in patients with VEO-IBD and aIBD. CONCLUSION: Methylation of cg22736354 in TPMT gene neighborhood is lower in patients with VEO-IBD and is associated with reduced azathioprine inactivation and increased TGN concentrations.


Assuntos
Azatioprina , Doenças Inflamatórias Intestinais , Adolescente , Criança , Humanos , Azatioprina/uso terapêutico , Metilação de DNA/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Imunossupressores/uso terapêutico
14.
Biomed Pharmacother ; 164: 114927, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37257228

RESUMO

Thalidomide has emerged as an effective immunomodulator in the treatment of pediatric patients with inflammatory bowel disease (IBD) refractory to standard therapies. Cereblon (CRBN), a component of E3 protein ligase complex that mediates ubiquitination and proteasomal degradation of target proteins, has been identified as the primary target of thalidomide. CRBN plays a crucial role in thalidomide teratogenicity, however it is unclear whether it is also involved in the therapeutic effects in IBD patients. This study aimed at identifying the molecular mechanisms underpinning thalidomide action in pediatric IBD. In this study, ten IBD pediatric patients responsive to thalidomide were prospectively enrolled. RNA-sequencing (RNA-seq) analysis and functional enrichment analysis were carried out on peripheral blood mononuclear cells (PBMC) obtained before and after twelve weeks of treatment with thalidomide. RNA-seq analysis revealed 378 differentially expressed genes before and after treatment with thalidomide. The most deregulated pathways were cytosolic calcium ion concentration, cAMP-mediated signaling, eicosanoid signaling and inhibition of matrix metalloproteinases. Neuronal signaling mechanisms such as CREB signaling in neurons and axonal guidance signaling also emerged. Connectivity Map analysis revealed that thalidomide gene expression changes were similar to those exposed to MLN4924, an inhibitor of NEDD8 activating enzyme, suggesting that thalidomide exerts its immunomodulatory effects by acting on the ubiquitin-proteasome pathway. In vitro experiments on cell lines confirmed the effect of thalidomide on candidate altered pathways observed in patients. These results represent a unique resource for enhanced understanding of thalidomide mechanism in pediatric patients with IBD, providing novel potential targets associated with drug response.


Assuntos
Doenças Inflamatórias Intestinais , Talidomida , Humanos , Criança , Talidomida/efeitos adversos , Leucócitos Mononucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/induzido quimicamente , Perfilação da Expressão Gênica
15.
J Pers Med ; 12(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35743733

RESUMO

The use of infliximab has completely changed the therapeutic landscape in inflammatory bowel disease. However, despite its proven efficacy to induce and maintain clinical remission, increasing evidence suggests that treatment failure may be associated with inadequate drug blood concentrations. The introduction of biosensors based on different nanostructured materials for the rapid quantification of drugs has been proposed for therapeutic drug monitoring. This study aimed to apply atomic force microscopy (AFM)-based nanoassay for the measurement of infliximab concentration in serum samples of healthy donors and pediatric IBD patients. This assay measured the height signal variation of a nanostructured gold surface covered with a self-assembled monolayer of alkanethiols. Inside this monolayer, we embedded the DNA conjugated with a tumor necrosis factor able to recognize the drug. The system was initially fine-tuned by testing known infliximab concentrations (0, 20, 30, 40, and 50 nM) in buffer and then spiking the same concentrations of infliximab into the sera of healthy donors, followed by testing pediatric IBD patients. A good correlation between height variation and drug concentration was found in the buffer in both healthy donors and pediatric IBD patients (p-value < 0.05), demonstrating the promising use of AFM nanoassay in TDM.

16.
Curr Med Chem ; 29(20): 3586-3600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34879795

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are a heterogeneous family of small vesicles released by donor cells and absorbed by recipient cells, which represent important mediators with fundamental roles in both physiological and pathological conditions. EVs are present in a large variety of biological fluids and have a great diagnostic and prognostic value. They have gained the interest of the scientific community due to their extreme versatility. In fact, they allow us to hypothesize new therapeutic strategies since, in addition to being cell signal mediators, they play an important role as biomarkers, drug vehicles, and potential new therapeutic agents. They are also involved in immunoregulation, have the ability to transmit resistance to a drug from one cell to a more sensitive one, and can act as drug delivery systems. OBJECTIVE: The main reciprocal interactions between EVs and immunosuppressive drugs will be presented. RESULTS: The known interactions between EVs and immunosuppressive drugs, in particular cyclosporin, glucocorticoids, rapamycin, methotrexate, cyclophosphamide, eculizumab, infliximab, certolizumab, etanercept, glatiramer acetate, and fingolimod are presented. CONCLUSION: This review provides relevant information on the links between EVs and immunosuppressive drugs with a focus on EVs' role as tools to assess the effects of immunosuppressants, suggesting innovative properties and new possible therapeutic uses.


Assuntos
Vesículas Extracelulares , Imunossupressores , Biomarcadores , Sistemas de Liberação de Medicamentos , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Preparações Farmacêuticas
17.
World J Gastroenterol ; 28(24): 2636-2653, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35979165

RESUMO

Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders of the intestinal tract that have emerged as a growing problem in industrialized countries. Knowledge of IBD pathogenesis is still incomplete, and the most widely-accepted interpretation considers genetic factors, environmental stimuli, uncontrolled immune responses and altered intestinal microbiota composition as determinants of IBD, leading to dysfunction of the intestinal epithelial functions. In vitro models commonly used to study the intestinal barrier do not fully reflect the proper intestinal architecture. An important innovation is represented by organoids, 3D in vitro cell structures derived from stem cells that can self-organize into functional organ-specific structures. Organoids may be generated from induced pluripotent stem cells or adult intestinal stem cells of IBD patients and therefore retain their genetic and transcriptomic profile. These models are powerful pharmacological tools to better understand IBD pathogenesis, to study the mechanisms of action on the epithelial barrier of drugs already used in the treatment of IBD, and to evaluate novel target-directed molecules which could improve therapeutic strategies. The aim of this review is to illustrate the potential use of organoids for therapy personalization by focusing on the most significant advances in IBD research achieved through the use of adult stem cells-derived intestinal organoids.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mucosa Intestinal/patologia , Intestinos/patologia , Organoides
18.
Metabolites ; 12(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36557210

RESUMO

Thiopurine drugs are part of the therapeutic armamentarium for pediatric patients suffering from inflammatory bowel disease (IBD) and acute lymphoblastic leukemia (ALL). The therapeutic drug monitoring of these drugs, consisting of measurements of the thiopurine metabolites thioguanine nucleotides (TGN) and methylmercaptopurine nucleotides (MMPN) are used to optimize the effectiveness of treatment and prevent adverse effects. In this context, we developed and validated a high-performance liquid chromatography-diode array detection (HPLC-DAD) method for the simultaneous quantification of thiopurine metabolites according to the most recent International Council for Harmonisation (ICH) guidelines. The calibration curves were built in the clinically relevant range of concentrations for TGN of 300-12,000 nM and for MMPN of 3000-60,000 nM. The limit of detection and the lower limit of quantification were 100 and 300 nM for TGN and 900 and 3000 nM for MMPN, respectively. The percentage of inter-day accuracy and precision (CV%) varied between 85 and 104% and 1.6 and 13.8%. Stability was demonstrated for both of the metabolites for at least 50 days at -20 °C. The proposed HPLC-DAD method showed an appropriate selectivity, specificity, linearity, accuracy, precision and good applicability to samples from patients with IBD and ALL undergoing thiopurine treatment.

20.
Front Pharmacol ; 12: 772101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744751

RESUMO

Increased risk of colorectal cancer (CRC) in inflammatory bowel disease (IBD) patients has been attributed to long-standing chronic inflammation, with the contribution of genetic alterations and environmental factors such as the microbiota. Moreover, accumulating data indicate that IBD-associated CRC (IBD-CRC) may initiate and develop through a pathway of tumorigenesis distinct from that of sporadic CRC. This mini-review summarizes the current knowledge of IBD-CRC, focusing on the main mechanisms underlying its pathogenesis, and on the important role of immunomodulators and biologics used to treat IBD patients in interfering with the inflammatory process involved in carcinogenesis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa