Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(50): e2314429120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055739

RESUMO

We detected ENU-induced alleles of Mfsd1 (encoding the major facilitator superfamily domain containing 1 protein) that caused lymphopenia, splenomegaly, progressive liver pathology, and extramedullary hematopoiesis (EMH). MFSD1 is a lysosomal membrane-bound solute carrier protein with no previously described function in immunity. By proteomic analysis, we identified association between MFSD1 and both GLMP (glycosylated lysosomal membrane protein) and GIMAP5 (GTPase of immunity-associated protein 5). Germline knockout alleles of Mfsd1, Glmp, and Gimap5 each caused lymphopenia, liver pathology, EMH, and lipid deposition in the bone marrow and liver. We found that the interactions of MFSD1 and GLMP with GIMAP5 are essential to maintain normal GIMAP5 expression, which in turn is critical to support lymphocyte development and liver homeostasis that suppresses EMH. These findings identify the protein complex MFSD1-GLMP-GIMAP5 operating in hematopoietic and extrahematopoietic tissues to regulate immunity and liver homeostasis.


Assuntos
Proteínas de Ligação ao GTP , Linfopenia , Humanos , Proteínas de Ligação ao GTP/metabolismo , Proteômica , Fígado/metabolismo , Linfócitos/metabolismo , Linfopenia/genética , Homeostase
2.
EMBO J ; 40(9): e104888, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33630350

RESUMO

Endoplasmic reticulum (ER) calcium (Ca2+ ) stores are critical to proteostasis, intracellular signaling, and cellular bioenergetics. Through forward genetic screening in mice, we identified two members of a new complex, Pacs1 and Wdr37, which are required for normal ER Ca2+ handling in lymphocytes. Deletion of Pacs1 or Wdr37 caused peripheral lymphopenia that was linked to blunted Ca2+ release from the ER after antigen receptor stimulation. Pacs1-deficient cells showed diminished inositol triphosphate receptor expression together with increased ER and oxidative stress. Mature Pacs1-/- B cells proliferated and died in vivo under lymphocyte replete conditions, indicating spontaneous loss of cellular quiescence. Disruption of Pacs1-Wdr37 did not diminish adaptive immune responses, but potently suppressed lymphoproliferative disease models by forcing loss of quiescence. Thus, Pacs1-Wdr37 plays a critical role in stabilizing lymphocyte populations through ER Ca2+ handling and presents a new target for lymphoproliferative disease therapy.


Assuntos
Retículo Endoplasmático/metabolismo , Deleção de Genes , Linfopenia/genética , Transtornos Linfoproliferativos/genética , Proteínas Nucleares/genética , Proteínas de Transporte Vesicular/genética , Animais , Linfócitos B/metabolismo , Sinalização do Cálcio , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Linfopenia/metabolismo , Transtornos Linfoproliferativos/metabolismo , Masculino , Camundongos , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Proteínas de Transporte Vesicular/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(18): e2200128119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482923

RESUMO

Null mutations of spliceosome components or cofactors are homozygous lethal in eukaryotes, but viable hypomorphic mutations provide an opportunity to understand the physiological impact of individual splicing proteins. We describe a viable missense allele (F181I) of Rnps1 encoding an essential regulator of splicing and nonsense-mediated decay (NMD), identified in a mouse genetic screen for altered immune cell development. Homozygous mice displayed a stem cell­intrinsic defect in hematopoiesis of all lineages due to excessive apoptosis induced by tumor necrosis factor (TNF)­dependent death signaling. Numerous transcript splice variants containing retained introns and skipped exons were detected at elevated frequencies in Rnps1F181I/F181I splenic CD8+ T cells and hematopoietic stem cells (HSCs), but NMD appeared normal. Strikingly, Tnf knockout rescued all hematopoietic cells to normal or near-normal levels in Rnps1F181I/F181I mice and dramatically reduced intron retention in Rnps1F181I/F181I CD8+ T cells and HSCs. Thus, RNPS1 is necessary for accurate splicing, without which disinhibited TNF signaling triggers hematopoietic cell death.


Assuntos
Linfócitos T CD8-Positivos , Ribonucleoproteínas , Animais , Linfócitos T CD8-Positivos/metabolismo , Hematopoese/genética , Homozigoto , Mamíferos/metabolismo , Camundongos , Receptores do Fator de Necrose Tumoral/metabolismo , Ribonucleoproteínas/metabolismo , Deleção de Sequência , Fatores de Necrose Tumoral/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260399

RESUMO

Forward genetic studies use meiotic mapping to adduce evidence that a particular mutation, normally induced by a germline mutagen, is causative of a particular phenotype. Particularly in small pedigrees, cosegregation of multiple mutations, occasional unawareness of mutations, and paucity of homozygotes may lead to erroneous declarations of cause and effect. We sought to improve the identification of mutations causing immune phenotypes in mice by creating Candidate Explorer (CE), a machine-learning software program that integrates 67 features of genetic mapping data into a single numeric score, mathematically convertible to the probability of verification of any putative mutation-phenotype association. At this time, CE has evaluated putative mutation-phenotype associations arising from screening damaging mutations in ∼55% of mouse genes for effects on flow cytometry measurements of immune cells in the blood. CE has therefore identified more than half of genes within which mutations can be causative of flow cytometric phenovariation in Mus musculus The majority of these genes were not previously known to support immune function or homeostasis. Mouse geneticists will find CE data informative in identifying causative mutations within quantitative trait loci, while clinical geneticists may use CE to help connect causative variants with rare heritable diseases of immunity, even in the absence of linkage information. CE displays integrated mutation, phenotype, and linkage data, and is freely available for query online.


Assuntos
Mutação em Linhagem Germinativa/genética , Leucócitos/metabolismo , Aprendizado de Máquina , Meiose/genética , Algoritmos , Animais , Automação , Feminino , Citometria de Fluxo , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Probabilidade , Reprodutibilidade dos Testes , Software
5.
Proc Natl Acad Sci U S A ; 117(9): 4894-4901, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071239

RESUMO

γ-secretase is an intramembrane protease complex that catalyzes the proteolytic cleavage of amyloid precursor protein and Notch. Impaired γ-secretase function is associated with the development of Alzheimer's disease and familial acne inversa in humans. In a forward genetic screen of mice with N-ethyl-N-nitrosourea-induced mutations for defects in adaptive immunity, we identified animals within a single pedigree exhibiting both hypopigmentation of the fur and diminished T cell-independent (TI) antibody responses. The causative mutation was in Ncstn, an essential gene encoding the protein nicastrin (NCSTN), a member of the γ-secretase complex that functions to recruit substrates for proteolysis. The missense mutation severely limits the glycosylation of NCSTN to its mature form and impairs the integrity of the γ-secretase complex as well as its catalytic activity toward its substrate Notch, a critical regulator of B cell and T cell development. Strikingly, however, this missense mutation affects B cell development but not thymocyte or T cell development. The Ncstn allele uncovered in these studies reveals an essential requirement for NCSTN during the type 2 transitional-marginal zone precursor stage and peritoneal B-1 B cell development, the TI antibody response, fur pigmentation, and intestinal homeostasis in mice.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Subpopulações de Linfócitos B/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Imunidade Adaptativa , Doença de Alzheimer/metabolismo , Animais , Membrana Celular/metabolismo , Etilnitrosoureia/efeitos adversos , Feminino , Hidradenite Supurativa/metabolismo , Humanos , Hipopigmentação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Linhagem , Linfócitos T/metabolismo , Transcriptoma
6.
Proc Natl Acad Sci U S A ; 117(23): 12931-12942, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457148

RESUMO

Retinal disease and loss of vision can result from any disruption of the complex pathways controlling retinal development and homeostasis. Forward genetics provides an excellent tool to find, in an unbiased manner, genes that are essential to these processes. Using N-ethyl-N-nitrosourea mutagenesis in mice in combination with a screening protocol using optical coherence tomography (OCT) and automated meiotic mapping, we identified 11 mutations presumably causative of retinal phenotypes in genes previously known to be essential for retinal integrity. In addition, we found multiple statistically significant gene-phenotype associations that have not been reported previously and decided to target one of these genes, Sfxn3 (encoding sideroflexin-3), using CRISPR/Cas9 technology. We demonstrate, using OCT, light microscopy, and electroretinography, that two Sfxn3-/- mouse lines developed progressive and severe outer retinal degeneration. Electron microscopy showed thinning of the retinal pigment epithelium and disruption of the external limiting membrane. Using single-cell RNA sequencing of retinal cells isolated from C57BL/6J mice, we demonstrate that Sfxn3 is expressed in several bipolar cell subtypes, retinal ganglion cells, and some amacrine cell subtypes but not significantly in Müller cells or photoreceptors. In situ hybridization confirmed these findings. Furthermore, pathway analysis suggests that Sfxn3 may be associated with synaptic homeostasis. Importantly, electron microscopy analysis showed disruption of synapses and synaptic ribbons in the outer plexiform layer of Sfxn3-/- mice. Our work describes a previously unknown requirement for Sfxn3 in retinal function.


Assuntos
Proteínas de Transporte de Cátions/genética , Degeneração Retiniana/genética , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Eletrorretinografia , Etilnitrosoureia/toxicidade , Feminino , Humanos , Masculino , Camundongos , Microscopia Eletrônica , Mutagênese , Mutação/efeitos dos fármacos , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/patologia , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Epitélio Pigmentado da Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/ultraestrutura , Tomografia de Coerência Óptica
7.
Proc Natl Acad Sci U S A ; 116(23): 11380-11389, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31097594

RESUMO

LPS-responsive beige-like anchor (LRBA) protein deficiency in humans causes immune dysregulation resulting in autoimmunity, inflammatory bowel disease (IBD), hypogammaglobulinemia, regulatory T (Treg) cell defects, and B cell functional defects, but the cellular and molecular mechanisms responsible are incompletely understood. In an ongoing forward genetic screen for N-ethyl-N-nitrosourea (ENU)-induced mutations that increase susceptibility to dextran sodium sulfate (DSS)-induced colitis in mice, we identified two nonsense mutations in Lrba Although Treg cells have been a main focus in LRBA research to date, we found that dendritic cells (DCs) contribute significantly to DSS-induced intestinal inflammation in LRBA-deficient mice. Lrba-/- DCs exhibited excessive IRF3/7- and PI3K/mTORC1-dependent signaling and type I IFN production in response to the stimulation of the Toll-like receptors (TLRs) 3, TLR7, and TLR9. Substantial reductions in cytokine expression and sensitivity to DSS in LRBA-deficient mice were caused by knockout of Unc93b1, a chaperone necessary for trafficking of TLR3, TLR7, and TLR9 to endosomes. Our data support a function for LRBA in limiting endosomal TLR signaling and consequent intestinal inflammation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Colite/metabolismo , Endossomos/metabolismo , Transdução de Sinais/fisiologia , Linfócitos T Reguladores/metabolismo , Animais , Autoimunidade/fisiologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Colite/induzido quimicamente , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Sulfato de Dextrana/farmacologia , Feminino , Inflamação/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos
8.
Allergy ; 76(4): 1095-1108, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32810290

RESUMO

BACKGROUND: Atopy, the overall tendency to become sensitized to an allergen, is heritable but seldom ascribed to mutations within specific genes. Atopic individuals develop abnormally elevated IgE responses to immunization with potential allergens. To gain insight into the genetic causes of atopy, we carried out a forward genetic screen for atopy in mice. METHODS: We screened mice carrying homozygous and heterozygous N-ethyl-N-nitrosourea (ENU)-induced germline mutations for aberrant antigen-specific IgE and IgG1 production in response to immunization with the model allergen papain. Candidate genes were validated by independent gene mutation. RESULTS: Of 31 candidate genes selected for investigation, the effects of mutations in 23 genes on papain-specific IgE or IgG1 were verified. Among the 20 verified genes influencing the IgE response, eight were necessary for the response, while 12 repressed IgE. Nine genes were not previously implicated in the IgE response. Fifteen genes encoded proteins contributing to IgE class switch recombination or B-cell receptor signaling. The precise roles of the five remaining genes (Flcn, Map1lc3b, Me2, Prkd2, and Scarb2) remain to be determined. Loss-of-function mutations in nine of the 12 genes limiting the IgE response were dominant or semi-dominant for the IgE phenotype but did not cause immunodeficiency in the heterozygous state. Using damaging allele frequencies for the corresponding human genes and in silico simulations (Monte Carlo) of undiscovered atopy mutations, we estimated the percentage of humans with heterozygous atopy risk mutations. CONCLUSIONS: Up to 37% of individuals may be heterozygous carriers for at least one dominant atopy risk mutation.


Assuntos
Hipersensibilidade Imediata , Imunoglobulina E , Alérgenos , Animais , Imunoglobulina G , Camundongos , Mutação
9.
Proc Natl Acad Sci U S A ; 115(49): E11523-E11531, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30442666

RESUMO

The SMCR8-WDR41-C9ORF72 complex is a regulator of autophagy and lysosomal function. Autoimmunity and inflammatory disease have been ascribed to loss-of-function mutations of Smcr8 or C9orf72 in mice. In humans, autoimmunity has been reported to precede amyotrophic lateral sclerosis caused by mutations of C9ORF72 However, the cellular and molecular mechanisms underlying autoimmunity and inflammation caused by C9ORF72 or SMCR8 deficiencies remain unknown. Here, we show that splenomegaly, lymphadenopathy, and activated circulating T cells observed in Smcr8-/- mice were rescued by triple knockout of the endosomal Toll-like receptors (TLRs) TLR3, TLR7, and TLR9. Myeloid cells from Smcr8-/- mice produced excessive inflammatory cytokines in response to endocytosed TLR3, TLR7, or TLR9 ligands administered in the growth medium and in response to TLR2 or TLR4 ligands internalized by phagocytosis. These defects likely stem from prolonged TLR signaling caused by accumulation of LysoTracker-positive vesicles and by delayed phagosome maturation, both of which were observed in Smcr8-/- macrophages. Smcr8-/- mice also showed elevated susceptibility to dextran sodium sulfate-induced colitis, which was not associated with increased TLR3, TLR7, or TLR9 signaling. Deficiency of WDR41 phenocopied loss of SMCR8. Our findings provide evidence that excessive endosomal TLR signaling resulting from prolonged ligand-receptor contact causes inflammatory disease in SMCR8-deficient mice.


Assuntos
Proteína C9orf72/metabolismo , Proteínas de Transporte/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Toll-Like/metabolismo , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Proteínas Relacionadas à Autofagia , Proteína C9orf72/genética , Proteínas de Transporte/genética , Colite/induzido quimicamente , Sulfato de Dextrana , Regulação da Expressão Gênica , Hematopoese/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Mutação , Transdução de Sinais/imunologia , Receptores Toll-Like/genética
10.
Proc Natl Acad Sci U S A ; 115(37): E8698-E8706, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150374

RESUMO

Successful cancer immunotherapy entails activation of innate immune receptors to promote dendritic cell (DC) maturation, antigen presentation, up-regulation of costimulatory molecules, and cytokine secretion, leading to activation of tumor antigen-specific cytotoxic T lymphocytes (CTLs). Here we screened a synthetic library of 100,000 compounds for innate immune activators using TNF production by THP-1 cells as a readout. We identified and optimized a potent human and mouse Toll-like receptor (TLR)1/TLR2 agonist, Diprovocim, which exhibited an EC50 of 110 pM in human THP-1 cells and 1.3 nM in primary mouse peritoneal macrophages. In mice, Diprovocim-adjuvanted ovalbumin immunization promoted antigen-specific humoral and CTL responses and synergized with anti-PD-L1 treatment to inhibit tumor growth, generating long-term antitumor memory, curing or prolonging survival of mice engrafted with the murine melanoma B16-OVA. Diprovocim induced greater frequencies of tumor-infiltrating leukocytes than alum, of which CD8 T cells were necessary for the antitumor effect of immunization plus anti-PD-L1 treatment.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Melanoma Experimental/terapia , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Animais , Anticorpos Monoclonais/imunologia , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Sinergismo Farmacológico , Humanos , Imunoterapia/métodos , Estimativa de Kaplan-Meier , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/imunologia , Células THP-1 , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
11.
Sci Adv ; 10(9): eadj9797, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427739

RESUMO

We used N-ethyl-N-nitrosurea-induced germline mutagenesis combined with automated meiotic mapping to identify specific systolic blood pressure (SBP) and heart rate (HR) determinant loci. We analyzed 43,627 third-generation (G3) mice from 841 pedigrees to assess the effects of 45,378 variant alleles within 15,760 genes, in both heterozygous and homozygous states. We comprehensively tested 23% of all protein-encoding autosomal genes and found 87 SBP and 144 HR (with 7 affecting both) candidates exhibiting detectable hypomorphic characteristics. Unexpectedly, only 18 of the 87 SBP genes were previously known, while 26 of the 144 genes linked to HR were previously identified. Furthermore, we confirmed the influence of two genes on SBP regulation and three genes on HR control through reverse genetics. This underscores the importance of our research in uncovering genes associated with these critical cardiovascular risk factors and illustrate the effectiveness of germline mutagenesis for defining key determinants of polygenic phenotypes that must be studied in an intact organism.


Assuntos
Etilnitrosoureia , Camundongos , Animais , Pressão Sanguínea/genética , Frequência Cardíaca/genética , Mutagênese , Etilnitrosoureia/toxicidade , Alelos
12.
Sci Rep ; 14(1): 3010, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321224

RESUMO

Activated microglia have been implicated in the pathogenesis of age-related macular degeneration (AMD), diabetic retinopathy, and other neurodegenerative and neuroinflammatory disorders, but our understanding of the mechanisms behind their activation is in infant stages. With the goal of identifying novel genes associated with microglial activation in the retina, we applied a semiquantitative fundus spot scoring scale to an unbiased, state-of-the-science mouse forward genetics pipeline. A mutation in the gene encoding the E3 ubiquitin ligase Herc3 led to prominent accumulation of fundus spots. CRISPR mutagenesis was used to generate Herc3-/- mice, which developed prominent accumulation of fundus spots and corresponding activated Iba1 + /CD16 + subretinal microglia, retinal thinning on OCT and histology, and functional deficits by Optomotory and electrophysiology. Bulk RNA sequencing identified activation of inflammatory pathways and differentially expressed genes involved in the modulation of microglial activation. Thus, despite the known expression of multiple E3 ubiquitin ligases in the retina, we identified a non-redundant role for Herc3 in retinal homeostasis. Our findings are significant given that a dysregulated ubiquitin-proteasome system (UPS) is important in prevalent retinal diseases, in which activated microglia appear to play a role. This association between Herc3 deficiency, retinal microglial activation and retinal degeneration merits further study.


Assuntos
Microglia , Degeneração Retiniana , Animais , Humanos , Camundongos , Microglia/metabolismo , Retina/patologia , Degeneração Retiniana/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo
13.
Exp Parasitol ; 134(3): 389-99, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23541881

RESUMO

The parasite Toxoplasma gondii controls tissue-specific nitric oxide (NO), thereby augmenting virulence and immunopathology through poorly-understood mechanisms. We now identify TgMAPK1, a Toxoplasma mitogen-activated protein kinase (MAPK), as a virulence factor regulating tissue-specific parasite burden by manipulating host interferon (IFN)-γ-mediated inducible nitric oxide synthase (iNOS). Toxoplasma with reduced TgMAPK1 expression (TgMAPK1(lo)) demonstrated that TgMAPK1 facilitates IFN-γ-driven p38 MAPK activation, reducing IFN-γ-generated NO in an MKK3-dependent manner, blunting IFN-γ-mediated parasite control. TgMAPK1(lo) infection in wild type mice produced ≥ten-fold lower parasite burden versus control parasites with normal TgMAPK1 expression (TgMAPK1(con)). Reduced parasite burdens persisted in IFN-γ KO mice, but equalized in normally iNOS-replete organs from iNOS KO mice. Parasite MAPKs are far less studied than other parasite kinases, but deserve additional attention as targets for immunotherapy and drug discovery.


Assuntos
Interferon gama/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Óxido Nítrico/metabolismo , Toxoplasma/enzimologia , Toxoplasmose Animal/parasitologia , Animais , Linhagem Celular , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Fígado/parasitologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Baço/parasitologia , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Toxoplasmose Animal/imunologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/fisiologia
14.
Commun Biol ; 6(1): 533, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198396

RESUMO

Microglia play a role in the pathogenesis of many retinal diseases. Fundus spots in mice often correlate with the accumulation of activated subretinal microglia. Here we use a semiquantitative fundus spot scoring scale in combination with an unbiased, state-of-the-science forward genetics pipeline to identify causative associations between chemically induced mutations and fundus spot phenotypes. Among several associations, we focus on a missense mutation in Lipe linked to an increase in yellow fundus spots in C57BL/6J mice. Lipe-/- mice generated using CRISPR-Cas9 technology are found to develop accumulation of subretinal microglia, a retinal degeneration with decreased visual function, and an abnormal retinal lipid profile. We establish an indispensable role of Lipe in retinal/RPE lipid homeostasis and retinal health. Further studies using this new model will be aimed at determining how lipid dysregulation results in the activation of subretinal microglia and whether these microglia also play a role in the subsequent retinal degeneration.


Assuntos
Degeneração Retiniana , Animais , Camundongos , Modelos Animais de Doenças , Testes Genéticos , Lipídeos , Camundongos Endogâmicos C57BL , Degeneração Retiniana/genética , Degeneração Retiniana/patologia
15.
J Immunol ; 184(11): 6151-60, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20427766

RESUMO

Both innate and adaptive immune systems are considered important for cancer prevention, immunosurveillance, and control of cancer progression. It is known that, although both systems initially eliminate emerging tumor cells efficiently, tumors eventually escape immune attack by a variety of mechanisms, including differentiation and recruitment of immunosuppressive CD11b(+)Gr-1(+) myeloid suppressor cells into the tumor microenvironment. However, we show that CD11b(+)Gr-1(+) cells found in ascites of epithelial ovarian cancer-bearing mice at advanced stages of disease are immunostimulatory rather than being immunosuppressive. These cells consist of a homogenous population of cells that morphologically resemble neutrophils. Moreover, like dendritic cells, immunostimulatory CD11b(+)Gr-1(+) cells can strongly cross-prime, augmenting the proliferation of functional CTLs via signaling through the expression of costimulatory molecule CD80. Adoptive transfer of these immunostimulatory CD11b(+)Gr-1(+) cells from ascites of ovarian cancer-bearing mice results in the significant regression of s.c. tumors even without being pulsed with exogenous tumor Ag prior to adoptive transfer. We now show for the first time that adaptive immune responses against cancer can be augmented by these cancer-induced granulocyte-like immunostimulatory myeloid (CD11b(+)Gr-1(+)) cells, thereby mediating highly effective antitumor immunity in an adoptive transfer model of immunity.


Assuntos
Antígeno CD11b/imunologia , Apresentação Cruzada/imunologia , Células Mieloides/imunologia , Neoplasias Ovarianas/imunologia , Receptores de Quimiocinas/imunologia , Transferência Adotiva , Animais , Antígenos/imunologia , Separação Celular , Feminino , Citometria de Fluxo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
16.
J Immunol ; 185(5): 2747-53, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20686128

RESUMO

CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) are immunopathogenic in cancers by impeding tumor-specific immunity. B7-homologue 1 (B7-H1) (CD274) is a cosignaling molecule with pleiotropic effects, including hindering antitumor immunity. In this study, we demonstrate sex-dependent, B7-H1-dependent differences in tumor immunity and response to immunotherapy in a hormone-independent cancer, murine B16 melanoma. Antitumor immunity was better in B7-H1(-/-) females versus males as a result of reduced regulatory T cell function in the B7-H1(-/-) females, and clinical response following B7-H1 blockade as tumor immunotherapy was significantly better in wild-type females than in males, owing to greater B7-H1 blockade-mediated reduction of Treg function in females. Wild-type female Tregs expressed significantly lower B7-H1 versus males but were insensitive to estrogen in vitro. Female B7-H1(-/-) Tregs were exquisitely sensitive to estrogen-mediated functional reduction in vitro, suggesting that B7-H1 effects occur before terminal Treg differentiation. Immune differences were independent of known B7-H1 ligands. Sex-dependent immune differences are seldom considered in designing immune therapy or interpreting immunotherapy treatment results. Our data demonstrate that sex is an important variable in tumor immunopathogenesis and immunotherapy responses through differential Treg function and B7-H1 signaling.


Assuntos
Antígeno B7-1/fisiologia , Imunoterapia Adotiva/métodos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Glicoproteínas de Membrana/fisiologia , Peptídeos/fisiologia , Caracteres Sexuais , Animais , Antígenos de Diferenciação/fisiologia , Antígeno B7-1/genética , Antígeno B7-H1 , Linhagem Celular Tumoral , Feminino , Imunidade Inata/genética , Masculino , Melanoma Experimental/fisiopatologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ovalbumina/biossíntese , Ovalbumina/genética , Ovalbumina/imunologia , Peptídeos/deficiência , Peptídeos/genética , Receptor de Morte Celular Programada 1 , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia
17.
Nat Commun ; 13(1): 4136, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842425

RESUMO

Obesity and diabetes are well known risk factors for nonalcoholic fatty liver disease (NAFLD), but the genetic factors contributing to the development of NAFLD remain poorly understood. Here we describe two semi-dominant allelic missense mutations (Oily and Carboniferous) of Predicted gene 4951 (Gm4951) identified from a forward genetic screen in mice. GM4951 deficient mice developed NAFLD on high fat diet (HFD) with no changes in body weight or glucose metabolism. Moreover, HFD caused a reduction in the level of Gm4951, which in turn promoted the development of NAFLD. Predominantly expressed in hepatocytes, GM4951 was verified as an interferon inducible GTPase. The NAFLD in Gm4951 knockout mice was associated with decreased lipid oxidation in the liver and no defect in hepatic lipid secretion. After lipid loading, hepatocyte GM4951 translocated to lipid droplets (LDs), bringing with it hydroxysteroid 17ß-dehydrogenase 13 (HSD17B13), which in the absence of GM4951 did not undergo this translocation. We identified a rare non-obese mouse model of NAFLD caused by GM4951 deficiency and define a critical role for GTPase-mediated translocation in hepatic lipid metabolism.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , GTP Fosfo-Hidrolases/metabolismo , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo
18.
Cell Metab ; 34(11): 1860-1874.e4, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228616

RESUMO

Using random germline mutagenesis in mice, we identified a viable hypomorphic allele (boh) of the transcription-factor-encoding gene Ovol2 that resulted in obesity, which initially developed with normal food intake and physical activity but decreased energy expenditure. Fat weight was dramatically increased, while lean weight was reduced in 12-week-old boh homozygous mice, culminating by 24 weeks in massive obesity, hepatosteatosis, insulin resistance, and diabetes. The Ovol2boh/boh genotype augmented obesity in Lepob/ob mice, and pair-feeding failed to normalize obesity in Ovol2boh/boh mice. OVOL2-deficient mice were extremely cold intolerant. OVOL2 is essential for brown/beige adipose tissue-mediated thermogenesis. In white adipose tissues, OVOL2 limited adipogenesis by blocking C/EBPα engagement of its transcriptional targets. Overexpression of OVOL2 in adipocytes of mice fed with a high-fat diet reduced total body and liver fat and improved insulin sensitivity. Our data reveal that OVOL2 plays dual functions in thermogenesis and adipogenesis to maintain energy balance.


Assuntos
Adipogenia , Resistência à Insulina , Camundongos , Animais , Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Termogênese/genética , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Dieta Hiperlipídica , Resistência à Insulina/genética , Metabolismo Energético/genética , Mutação , Camundongos Endogâmicos C57BL
19.
Dis Model Mech ; 14(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34142127

RESUMO

Embryonic formation and patterning of the vertebrate spinal column requires coordination of many molecular cues. After birth, the integrity of the spine is impacted by developmental abnormalities of the skeletal, muscular and nervous systems, which may result in deformities, such as kyphosis and scoliosis. We sought to identify novel genetic mouse models of severe spine deformity by implementing in vivo skeletal radiography as part of a high-throughput saturation mutagenesis screen. We report selected examples of genetic mouse models following radiographic screening of 54,497 mice from 1275 pedigrees. An estimated 30.44% of autosomal genes harbored predicted damaging alleles examined twice or more in the homozygous state. Of the 1275 pedigrees screened, 7.4% presented with severe spine deformity developing in multiple mice, and of these, meiotic mapping implicated N-ethyl-N-nitrosourea alleles in 21% of pedigrees. Our study provides proof of concept that saturation mutagenesis is capable of discovering novel mouse models of human disease, including conditions with skeletal, neural and neuromuscular pathologies. Furthermore, we report a mouse model of skeletal disease, including severe spine deformity, caused by recessive mutation in Scube3. By integrating results with a human clinical exome database, we identified a patient with undiagnosed skeletal disease who harbored recessive mutations in SCUBE3, and we demonstrated that disease-associated mutations are associated with reduced transactivation of Smad signaling in vitro. All radiographic results and mouse models are made publicly available through the Mutagenetix online database with the goal of advancing understanding of spine development and discovering novel mouse models of human disease.


Assuntos
Mutagênese , Coluna Vertebral/anormalidades , Animais , Proteínas de Ligação ao Cálcio/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Linhagem , Índice de Gravidade de Doença
20.
Nat Commun ; 12(1): 1379, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654074

RESUMO

Many immune responses depend upon activation of NF-κB, an important transcription factor in the elicitation of a cytokine response. Here we show that N4BP1 inhibits TLR-dependent activation of NF-κB by interacting with the NF-κB signaling essential modulator (NEMO, also known as IκB kinase γ) to attenuate NEMO-NEMO dimerization or oligomerization. The UBA-like (ubiquitin associated-like) and CUE-like (ubiquitin conjugation to ER degradation-like) domains in N4BP1 mediate interaction with the NEMO COZI domain. Both in vitro and in mice, N4bp1 deficiency specifically enhances TRIF-independent (TLR2, TLR7, or TLR9-mediated) but not TRIF-dependent (TLR3 or TLR4-mediated) NF-κB activation, leading to increased production of proinflammatory cytokines. In response to TLR4 or TLR3 activation, TRIF causes activation of caspase-8, which cleaves N4BP1 distal to residues D424 and D490 and abolishes its inhibitory effect. N4bp1-/- mice also have diminished numbers of T cells in the peripheral blood. Our work identifies N4BP1 as an inhibitory checkpoint protein that must be overcome to activate NF-κB, and a TRIF-initiated caspase-8-dependent mechanism by which this is accomplished.


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , NF-kappa B/metabolismo , Multimerização Proteica , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Caspase 8/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Herpesvirus Humano 1/fisiologia , Humanos , Interleucina-6/sangue , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Inibidor de NF-kappaB alfa/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Multimerização Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa