Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(7): 2526-2541, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38515431

RESUMO

A holistic understanding of plant strategies to acquire soil resources is pivotal in achieving sustainable food security. However, we lack knowledge about variety-specific root and rhizosphere traits for resource acquisition, their plasticity and adaptation to drought. We conducted a greenhouse experiment to phenotype root and rhizosphere traits (mean root diameter [Root D], specific root length [SRL], root tissue density, root nitrogen content, specific rhizosheath mass [SRM], arbuscular mycorrhizal fungi [AMF] colonization) of 16 landraces and 22 modern cultivars of temperate maize (Zea mays L.). Our results demonstrate that landraces and modern cultivars diverge in their root and rhizosphere traits. Although landraces follow a 'do-it-yourself' strategy with high SRLs, modern cultivars exhibit an 'outsourcing' strategy with increased mean Root Ds and a tendency towards increased root colonization by AMF. We further identified that SRM indicates an 'outsourcing' strategy. Additionally, landraces were more drought-responsive compared to modern cultivars based on multitrait response indices. We suggest that breeding leads to distinct resource acquisition strategies between temperate maize varieties. Future breeding efforts should increasingly target root and rhizosphere economics, with SRM serving as a valuable proxy for identifying varieties employing an outsourcing resource acquisition strategy.


Assuntos
Adaptação Fisiológica , Secas , Micorrizas , Raízes de Plantas , Rizosfera , Solo , Zea mays , Zea mays/fisiologia , Zea mays/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Solo/química , Micorrizas/fisiologia , Fenótipo , Nitrogênio/metabolismo
2.
Ann Bot ; 131(2): 373-386, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479887

RESUMO

BACKGROUND AND AIMS: Stomatal regulation allows plants to promptly respond to water stress. However, our understanding of the impact of above and belowground hydraulic traits on stomatal regulation remains incomplete. The objective of this study was to investigate how key plant hydraulic traits impact transpiration of maize during soil drying. We hypothesize that the stomatal response to soil drying is related to a loss in soil hydraulic conductivity at the root-soil interface, which in turn depends on plant hydraulic traits. METHODS: We investigate the response of 48 contrasting maize (Zea mays) genotypes to soil drying, utilizing a novel phenotyping facility. In this context, we measure the relationship between leaf water potential, soil water potential, soil water content and transpiration, as well as root, rhizosphere and aboveground plant traits. KEY RESULTS: Genotypes differed in their responsiveness to soil drying. The critical soil water potential at which plants started decreasing transpiration was related to a combination of above and belowground traits: genotypes with a higher maximum transpiration and plant hydraulic conductance as well as a smaller root and rhizosphere system closed stomata at less negative soil water potentials. CONCLUSIONS: Our results demonstrate the importance of belowground hydraulics for stomatal regulation and hence drought responsiveness during soil drying. Furthermore, this finding supports the hypothesis that stomata start to close when soil hydraulic conductivity drops at the root-soil interface.


Assuntos
Dessecação , Zea mays , Zea mays/genética , Genótipo , Fenótipo , Folhas de Planta/genética , Transpiração Vegetal , Solo , Estômatos de Plantas , Raízes de Plantas/genética
3.
Appl Environ Microbiol ; 87(16): e0046021, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34085863

RESUMO

Nitrate removal in oligotrophic environments is often limited by the availability of suitable organic electron donors. Chemolithoautotrophic bacteria may play a key role in denitrification in aquifers depleted in organic carbon. Under anoxic and circumneutral pH conditions, iron(II) was hypothesized to serve as an electron donor for microbially mediated nitrate reduction by Fe(II)-oxidizing (NRFeOx) microorganisms. However, lithoautotrophic NRFeOx cultures have never been enriched from any aquifer, and as such, there are no model cultures available to study the physiology and geochemistry of this potentially environmentally relevant process. Using iron(II) as an electron donor, we enriched a lithoautotrophic NRFeOx culture from nitrate-containing groundwater of a pyrite-rich limestone aquifer. In the enriched NRFeOx culture that does not require additional organic cosubstrates for growth, within 7 to 11 days, 0.3 to 0.5 mM nitrate was reduced and 1.3 to 2 mM iron(II) was oxidized, leading to a stoichiometric NO3-/Fe(II) ratio of 0.2, with N2 and N2O identified as the main nitrate reduction products. Short-range ordered Fe(III) (oxyhydr)oxides were the product of iron(II) oxidation. Microorganisms were observed to be closely associated with formed minerals, but only few cells were encrusted, suggesting that most of the bacteria were able to avoid mineral precipitation at their surface. Analysis of the microbial community by long-read 16S rRNA gene sequencing revealed that the culture is dominated by members of the Gallionellaceae family that are known as autotrophic, neutrophilic, and microaerophilic iron(II) oxidizers. In summary, our study suggests that NRFeOx mediated by lithoautotrophic bacteria can lead to nitrate removal in anthropogenically affected aquifers. IMPORTANCE Removal of nitrate by microbial denitrification in groundwater is often limited by low concentrations of organic carbon. In these carbon-poor ecosystems, nitrate-reducing bacteria that can use inorganic compounds such as Fe(II) (NRFeOx) as electron donors could play a major role in nitrate removal. However, no lithoautotrophic NRFeOx culture has been successfully isolated or enriched from this type of environment, and as such, there are no model cultures available to study the rate-limiting factors of this potentially important process. Here, we present the physiology and microbial community composition of a novel lithoautotrophic NRFeOx culture enriched from a fractured aquifer in southern Germany. The culture is dominated by a putative Fe(II) oxidizer affiliated with the Gallionellaceae family and performs nitrate reduction coupled to Fe(II) oxidation leading to N2O and N2 formation without the addition of organic substrates. Our analyses demonstrate that lithoautotrophic NRFeOx can potentially lead to nitrate removal in nitrate-contaminated aquifers.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Compostos Ferrosos/metabolismo , Água Subterrânea/microbiologia , Nitratos/metabolismo , Processos Autotróficos , Bactérias/classificação , Bactérias/genética , Carbonato de Cálcio/análise , Carbonato de Cálcio/metabolismo , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Água Subterrânea/química , Ferro/análise , Ferro/metabolismo , Oxirredução , Sulfetos/análise , Sulfetos/metabolismo
4.
Arch Microbiol ; 202(2): 421-426, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31659381

RESUMO

Zoogloea oleivorans, capable of using toluene as a sole source of carbon and energy, was earlier found to be an active degrader under microaerobic conditions in aquifer samples. To uncover the genetic background of the ability of microaerobic toluene degradation in Z. oleivorans, the whole-genome sequence of the type strain BucT was revealed. Metatranscriptomic sequence reads, originated from a previous SIP study on microaerobic toluene degradation, were mapped on the genome. The genome (5.68 Mb) had a mean G + C content of 62.5%, 5005 protein coding gene sequences and 80 RNA genes. Annotation predicted that 66 genes were involved in the metabolism of aromatic compounds. Genome analysis revealed the presence of a cluster with genes coding for a multicomponent phenol-hydroxylase system and a complete catechol meta-cleavage pathway. Another cluster flanked by mobile-element protein coding genes coded a partial catechol meta-cleavage pathway including a subfamily I.2.C-type extradiol dioxygenase. Analysis of metatranscriptomic data of a microaerobic toluene-degrading enrichment, containing Z . oleivorans as an active-toluene degrader revealed that a toluene dioxygenase-like enzyme was responsible for the ring-hydroxylation, while enzymes of the partial catechol meta-cleavage pathway coding cluster were responsible for further degradation of the aromatic ring under microaerobic conditions. This further advances our understanding of aromatic hydrocarbon degradation between fully oxic and strictly anoxic conditions.


Assuntos
Biodegradação Ambiental , Oxigenases/metabolismo , Tolueno/metabolismo , Zoogloea/metabolismo , Composição de Bases/genética , Catecóis , Metabolismo Energético/fisiologia , Genoma Bacteriano/genética , Água Subterrânea/microbiologia , Redes e Vias Metabólicas , Zoogloea/genética
5.
Microb Ecol ; 80(1): 243-247, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31989236

RESUMO

Microorganisms play an essential role in nitrogen cycling and greenhouse gas emissions in soils and sediments. The recently discovered oxygenic denitrifiers are proposed to reduce nitrate and nitrite via nitric oxide dismutation directly to N2 and O2. So far, the ecological role of these microbes is not well understood. The only available tool for a targeted study of oxygenic denitrifiers is their respective maker gene, nitric oxide dismutase (nod). Here, we established the use of PacBio long-read sequencing of nod gene amplicons to study the diversity and community structure of oxygenic denitrifiers. Two distinct sets of environmental samples, agricultural soil and lake sediment, were investigated as examples. The circular consensus sequences (ca 1.0 kb) obtained covered most substitution characteristic of NO dismutase and allowed for reliable classification of oxygenic denitrifiers. Distinct nod gene pools and community structure were revealed for the different habitats, with most sequence types affiliated to yet unidentified environmental nod lineages. The abundance of nod genes ranged 2.2 × 106-3.2 × 107 gene copies g-1 soil or sediment, accounting for up to 3% of total bacterial 16S rRNA gene counts. This study indicates that nod-gene-targeted long-read sequencing can be a powerful tool for studying the ecology of these novel microbes, and the results also suggest that oxygenic denitrifiers are prevalent and abundant in different terrestrial samples, where they could play an important, but yet overlooked role in nitrogen transformations.


Assuntos
Bactérias/isolamento & purificação , Proteínas de Bactérias/análise , Sedimentos Geológicos/microbiologia , Oxigenases/análise , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , China , Produção Agrícola , Desnitrificação , Lagos/microbiologia , Ciclo do Nitrogênio , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
6.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27986721

RESUMO

It has recently been suggested that oxygenic dismutation of NO into N2 and O2 may occur in the anaerobic methanotrophic "Candidatus Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1. It may represent a new pathway in microbial nitrogen cycling catalyzed by a putative NO dismutase (Nod). The formed O2 enables microbes to employ aerobic catabolic pathways in anoxic habitats, suggesting an ecophysiological niche space of substantial appeal for bioremediation and water treatment. However, it is still unknown whether this physiology is limited to "Ca Methylomirabilis oxyfera" and HdN1 and whether it can be coupled to the oxidation of electron donors other than alkanes. Here, we report insights into an unexpected diversity and remarkable abundance of nod genes in natural and engineered water systems. Phylogenetically diverse nod genes were recovered from a range of contaminated aquifers and N-removing wastewater treatment systems. Together with nod genes from "Ca Methylomirabilis oxyfera" and HdN1, the novel environmental nod sequences formed no fewer than 6 well-supported phylogenetic clusters, clearly distinct from canonical NO reductase (quinol-dependent NO reductase [qNor] and cytochrome c-dependent NO reductase [cNor]) genes. The abundance of nod genes in the investigated samples ranged from 1.6 × 107 to 5.2 × 1010 copies · g-1 (wet weight) of sediment or sludge biomass, accounting for up to 10% of total bacterial 16S rRNA gene counts. In essence, NO dismutation could be a much more widespread physiology than currently perceived. Understanding the controls of this emergent microbial capacity could offer new routes for nitrogen elimination or pollutant remediation in natural and engineered water systems. IMPORTANCE: NO dismutation into N2 and O2 is a novel process catalyzed by putative NO dismutase (Nod). To date, only two bacteria, the anaerobic methane-oxidizing bacterium "Ca Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1, are known to harbor nod genes. In this study, we report efficient molecular tools that can detect and quantify a wide diversity of nod genes in environmental samples. A surprisingly high diversity and abundance of nod genes were found in contaminated aquifers as well as wastewater treatment systems. This evidence indicates that NO dismutation may be a much more widespread physiology in natural and man-made environments than currently perceived. The molecular tools presented here will facilitate further studies on these enigmatic microbes in the future.


Assuntos
Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Óxido Nítrico/metabolismo , Superóxido Dismutase/genética , Águas Residuárias/química , Oxirredução , Purificação da Água
7.
Anal Chem ; 87(13): 6622-30, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26010835

RESUMO

Raman microspectroscopy is a prime tool to characterize the molecular and isotopic composition of microbial cells. However, low sensitivity and long acquisition times limit a broad applicability of the method in environmental analysis. In this study, we explore the potential, the applicability, and the limitations of stable isotope Raman microspectroscopy (SIRM), resonance SIRM, and SIRM in combination with surface-enhanced Raman scattering (SERS) for the characterization of single bacterial cells. The latter two techniques have the potential to significantly increase sensitivity and decrease measurement times in SIRM, but to date, there are no (SERS-SIRM) or only a limited number (resonance SIRM) of studies in environmental microbiology. The analyzed microorganisms were grown with substrates fully labeled with the stable isotopes (13)C or (2)H and compounds with natural abundance of atomic isotopes ((12)C 98.89% or (1)H 99.9844%, designated as (12)C or (1)H, respectively). Raman bands of bacterial cell compounds in stable isotope-labeled microorganisms exhibited a characteristic red-shift in the spectra. In particular, the sharp phenylalanine band was found to be an applicable marker band for SIRM analysis of the Deltaproteobacterium strain N47 growing anaerobically on (13)C-naphthalene. The study of G. metallireducens grown with (13)C- and (2)H-acetate showed that the information on the chromophore cytochrome c obtained by resonance SIRM at 532 nm excitation wavelength can be successfully complemented by whole-organism fingerprints of bacteria cells achieved by regular SIRM after photobleaching. Furthermore, we present here for the first time the reproducible SERS analysis of microbial cells labeled with stable isotopes. Escherichia coli strain DSM 1116 cultivated with (12)C- or (13)C-glucose was used as a model organism. Silver nanoparticles synthesized in situ were applied as SERS media. We observed a reproducible red-shift of an adenine-related marker band from 733 to 720 cm(-1) in SERS spectra for (13)C-labeled cells. Additionally, Raman measurements of (12)C/(13)C-glucose and -phenylalanine mixtures were performed to elucidate the feasibility of SIRM for nondestructive quantitative and spatially resolved analysis. The performed analysis of isotopically labeled microbial cells with SERS-SIRM and resonance SIRM paves the way toward novel approaches to apply Raman microspectroscopy in environmental process studies.


Assuntos
Análise Espectral Raman/métodos , Microscopia Eletrônica de Varredura , Padrões de Referência , Propriedades de Superfície
8.
Environ Sci Technol ; 49(12): 7073-81, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26000605

RESUMO

Biodegradation is one of the most favored and sustainable means of removing organic pollutants from contaminated aquifers but the major steering factors are still surprisingly poorly understood. Growing evidence questions some of the established concepts for control of biodegradation. Here, we critically discuss classical concepts such as the thermodynamic redox zonation, or the use of steady state transport scenarios for assessing biodegradation rates. Furthermore, we discuss if the absence of specific degrader populations can explain poor biodegradation. We propose updated perspectives on the controls of biodegradation in contaminant plumes. These include the plume fringe concept, transport limitations, and transient conditions as currently underestimated processes affecting biodegradation.


Assuntos
Bactérias/metabolismo , Água Subterrânea/microbiologia , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Elétrons , Oxirredução
9.
Appl Microbiol Biotechnol ; 99(23): 10323-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26264137

RESUMO

Slow sand filtration (SSF) is an effective low-tech water treatment method for pathogen and particle removal. Yet despite its application for centuries, it has been uncertain to which extent pathogenic microbes are removed by mechanical filtration or due to ecological interactions such as grazing and competition for nutrients. In this study, we quantified the removal of bacterial faecal indicators, Escherichia coli and Enterococcus faecalis, from secondary effluent of a wastewater treatment plant and analysed the microbial community composition in compartments of laboratory model SSF columns. The columns were packed with different sand grain sizes and eliminated 1.6-2.3 log units of faecal indicators, which translated into effluents of bathing water quality according to the EU directive (<500 colony forming units of E. coli per 100 ml) for columns with small grain size. Most of that removal occurred in the upper filter area, the Schmutzdecke. Within that same zone, total bacterial numbers increased however, thus suggesting a specific elimination of the faecal indicators. The analysis of the microbial communities also revealed that some taxa were removed more from the wastewater than others. These results accentuate the contribution of biological mechanisms to water purification in SSF.


Assuntos
Enterococcus faecalis/isolamento & purificação , Escherichia coli/isolamento & purificação , Filtração/métodos , Microbiologia da Água , Poluentes da Água , Purificação da Água/métodos , Carga Bacteriana , Biota
10.
Sci Rep ; 14(1): 7075, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528088

RESUMO

Protocells are believed to have existed on early Earth prior to the emergence of prokaryotes. Due to their rudimentary nature, it is widely accepted that these protocells lacked intracellular mechanisms to regulate their reproduction, thereby relying heavily on environmental conditions. To understand protocell reproduction, we adopted a top-down approach of transforming a Gram-positive bacterium into a lipid-vesicle-like state. In this state, cells lacked intrinsic mechanisms to regulate their morphology or reproduction, resembling theoretical propositions on protocells. Subsequently, we grew these proxy-protocells under the environmental conditions of early Earth to understand their impact on protocell reproduction. Despite the lack of molecular biological coordination, cells in our study underwent reproduction in an organized manner. The method and the efficiency of their reproduction can be explained by an interplay between the physicochemical properties of cell constituents and environmental conditions. While the overall reproductive efficiency in these top-down modified cells was lower than their counterparts with a cell wall, the process always resulted in viable daughter cells. Given the simplicity and suitability of this reproduction method to early Earth environmental conditions, we propose that primitive protocells likely reproduced by a process like the one we described below.


Assuntos
Células Artificiais , Reprodução
11.
Appl Environ Microbiol ; 79(2): 543-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124238

RESUMO

The detection of anaerobic hydrocarbon degrader populations via catabolic gene markers is important for the understanding of processes at contaminated sites. Fumarate-adding enzymes (FAEs; i.e., benzylsuccinate and alkylsuccinate synthases) have already been established as specific functional marker genes for anaerobic hydrocarbon degraders. Several recent studies based on pure cultures and laboratory enrichments have shown the existence of new and deeply branching FAE gene lineages, such as clostridial benzylsuccinate synthases and homologues, as well as naphthylmethylsuccinate synthases. However, established FAE gene detection assays were not designed to target these novel lineages, and consequently, their detectability in different environments remains obscure. Here, we present a new suite of parallel primer sets for detecting the comprehensive range of FAE markers known to date, including clostridial benzylsuccinate, naphthylmethylsuccinate, and alkylsuccinate synthases. It was not possible to develop one single assay spanning the complete diversity of FAE genes alone. The enhanced assays were tested with a range of hydrocarbon-degrading pure cultures, enrichments, and environmental samples of marine and terrestrial origin. They revealed the presence of several, partially unexpected FAE gene lineages not detected in these environments before: distinct deltaproteobacterial and also clostridial bssA homologues as well as environmental nmsA homologues. These findings were backed up by dual-digest terminal restriction fragment length polymorphism diagnostics to identify FAE gene populations independently of sequencing. This allows rapid insights into intrinsic degrader populations and degradation potentials established in aromatic and aliphatic hydrocarbon-impacted environmental systems.


Assuntos
Bactérias/enzimologia , Enzimas/genética , Fumaratos/metabolismo , Hidrocarbonetos/metabolismo , Redes e Vias Metabólicas/genética , Metagenômica/métodos , Anaerobiose , Bactérias/genética , Biotransformação , Primers do DNA/genética , Enzimas/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA , Microbiologia do Solo , Microbiologia da Água
12.
Sci Total Environ ; 857(Pt 3): 159610, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36273563

RESUMO

The increasing accumulation of microplastics (MP) in the environment is considered one of the most important environmental challenges of our times. Reliable extraction and detection methods for MP in environmental samples are essential for determining the extent of pollution and assessing ecological risks. However, extraction of MP from complex environmental matrices such as soil remains technically challenging. Today, density-based extractions with saturated salt solutions are widely applied. Nevertheless, current methods do not allow for the fractionation of different MP particle types according to their specific polymer densities. Here, we present a novel isopycnic ultracentrifugation approach for the simultaneous extraction and fractionation of MP mixtures based on the particle-specific buoyant densities. In this proof-of-concept study, diffusion-based density gradients were prepared using caesium chloride media, covering a density range between 1.1 and 1.5 g mL-1, sufficient to resolve many common polymer densities. We selected MP particles with a low (polyamide; PA66), medium (polybutylene adipate terephthalate; PBAT), and high (polyethylene terephthalate; PET) density to validate separation performance. Both pristine and soil-incubated MP mixtures showed clear banding patterns at expected buoyant densities after isopycnic separation. µFTIR imaging of subsamples collected from resolved MP fractions showed a polymer-specific separation of ≥87.6 %. In addition, the quantitative recovery of MP particles from soil was between 86 and 99 %. The potential of isopycnic ultracentrifugation to preserve MP-associated biofilms was also assessed. Soil-incubated MP particles were inspected by confocal laser scanning microscopy before and after isopycnic separation, indicating a preservation of bioorganic structures. Hence, isopycnic ultracentrifugation offers a powerful novel approach for a polymer-specific extraction and resolution of MP particles with a wide potential for applications in MP research.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluição Ambiental , Solo , Ultracentrifugação , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
13.
iScience ; 26(11): 108149, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37942012

RESUMO

Bacterial protoplasts are known to reproduce independently of canonical molecular biological processes. Although their reproduction is thought to be influenced by environmental conditions, the growth of protoplasts in their natural habitat has never been empirically studied. Here, we studied the life cycle of protoplasts in their native environment. Contrary to the previous perception that protoplasts reproduce in an erratic manner, cells in our study reproduced in a defined sequence of steps, always leading to viable daughter cells. Their reproduction can be explained by an interplay between intracellular metabolism, the physicochemical properties of cell constituents, and the nature of cations in the growth media. The efficiency of reproduction is determined by the environmental conditions. Under favorable environmental conditions, protoplasts reproduce with nearly similar efficiency to cells that possess a cell wall. In short, here we demonstrate the simplest method of cellular reproduction and the influence of environmental conditions on this process.

14.
Water Res ; 217: 118334, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35397370

RESUMO

The input of nitrate and other agricultural pollutants in higher-order streams largely derives from first-order streams. The streambed as the transition zone between groundwater and stream water has a decisive impact on the attenuation of such pollutants. This reactivity is not yet well understood for lower-order agricultural streams, which are often anthropogenically altered and lack the streambed complexity allowing for extensive hyporheic exchange. Reactive hot spots in such streambeds have been hypothesized as a function of hydrology, which controls the local gaining (groundwater exfiltration) or losing (infiltration) of stream water. However, streambed microbial communities and activities associated with such reactive zones remain mostly uncharted. In this study, sediments of a first-order agriculturally impacted stream in southern Germany were investigated. Along with a hydraulic dissection of distinct gaining and losing reaches of the stream, community composition and the abundance of bacterial communities in the streambed were investigated using PacBio long-read sequencing of bacterial 16S rRNA gene amplicons, and qPCR of bacterial 16S rRNA and denitrification genes (nirK and nirS). We show that bidirectional water exchange between groundwater and the stream represents an important control for sediment microbiota, especially for nitrate-reducing populations. Typical heterotrophic denitrifiers were most abundant in a midstream net losing section, while up- and downstream net gaining sections were associated with an enrichment of sulfur-oxidizing potential nitrate reducers affiliated with Sulfuricurvum and Thiobacillus spp. Dispersal-based community assembly was found to dominate such spots of groundwater exfiltration. Our results indicate a coupling of N- and S-cycling processes in the streambed of an agricultural first-order stream, and a prominent control of microbiology by hydrology and hydrochemistry in situ. Such detailed local heterogeneities in exchange fluxes and streambed microbiomes have not been reported to date, but seem relevant for understanding the reactivity of lower-order streams.


Assuntos
Poluentes Ambientais , Água Subterrânea , Microbiota , Poluentes Ambientais/análise , Água Subterrânea/química , Nitratos/análise , RNA Ribossômico 16S , Água/análise
15.
mLife ; 1(3): 323-328, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38818217

RESUMO

Methane oxidizing microbes play a key role in reducing the emission of this potent greenhouse gas to the atmosphere. The known versatility of the recently discovered anaerobic Methylomirabilota methanotrophs is limited. Here, we report a novel uncultured Methylomirabilis species, Candidatus Methylomirabilis iodofontis, with the genetic potential of iodate respiration from biofilm in iodine-rich cavern spring water. Star-like cells resembling Methylomirabilis oxyfera were directly observed from the biofilm and a high-quality metagenome-assembled genome (MAG) of Ca. M. iodofontis was assembled. In addition to oxygenic denitrification and aerobic methane oxidation pathways, the M. iodofontis MAG also indicated its iodate-reducing potential, a capability that would enable the bacterium to use iodate other than nitrite as an electron acceptor, a hitherto unrecognized metabolic potential of Methylomirabilota methanotrophs. The results advance the current understanding of the ecophysiology of anaerobic Methylomirabilota methanotrophs and may suggest an additional methane sink, especially in iodate-rich ecosystems.

16.
FEMS Microbiol Ecol ; 98(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35416241

RESUMO

Cable bacteria (CB) perform electrogenic sulfur oxidation (e-SOx) by spatially separating redox half reactions over centimetre distances. For freshwater systems, the ecology of CB is not yet well understood, partly because they proved difficult to cultivate. This study introduces a new 'agar pillar' approach to selectively enrich and investigate CB populations. Within sediment columns, a central agar pillar is embedded, providing a sediment-free gradient system in equilibrium with the surrounding sediment. We incubated freshwater sediments from a streambed, a sulfidic lake and a hydrocarbon-polluted aquifer in such agar pillar columns. Microprofiling revealed typical patterns of e-SOx, such as the development of a suboxic zone and the establishment of electric potentials. The bacterial communities in the sediments and agar pillars were analysed over depth by PacBio near-full-length 16S rRNA gene amplicon sequencing, allowing for a precise phylogenetic placement of taxa detected. The selective niche of the agar pillar was preferentially colonized by CB related to Candidatus Electronema for surface water sediments, including several potentially novel species, but not for putative groundwater CB affiliated with Desulfurivibrio spp. The presence of CB was seemingly linked to co-enriched fermenters, hinting at a possible role of e-SOx populations as an electron sink for heterotrophic microbes. These findings add to our current understanding of the diversity and ecology of CB in freshwater systems, and to a discrimination of CB from surface and groundwater sediments. The agar pillar approach provides a new strategy that may facilitate the cultivation of redox gradient-dependent microorganisms, including previously unrecognized CB populations.


Assuntos
Elétrons , Sedimentos Geológicos , Ágar , Bactérias/genética , Sedimentos Geológicos/microbiologia , Lagos , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
17.
Appl Environ Microbiol ; 77(11): 3749-56, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21460109

RESUMO

In abandoned coal mines, methanogenic archaea are responsible for the production of substantial amounts of methane. The present study aimed to directly unravel the active methanogens mediating methane release as well as active bacteria potentially involved in the trophic network. Therefore, the stable-isotope-labeled precursors of methane, [(13)C]acetate and H(2)-(13)CO(2), were fed to liquid cultures from hard coal and mine timber from a coal mine in Germany. Guided by methane production rates, samples for DNA stable-isotope probing (SIP) with subsequent quantitative PCR and denaturing gradient gel electrophoretic (DGGE) analyses were taken over 6 months. Surprisingly, the formation of [(13)C]methane was linked to acetoclastic methanogenesis in both the [(13)C]acetate- and the H(2)-(13)CO(2)-amended cultures of coal and timber. H(2)-(13)CO(2) was used mainly by acetogens related to Pelobacter acetylenicus and Clostridium species. Active methanogens, closely affiliated with Methanosarcina barkeri, utilized the readily available acetate rather than the thermodynamically more favorable hydrogen. Thus, the methanogenic microbial community appears to be highly adapted to the low-H(2) conditions found in coal mines.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Metano/metabolismo , Methanosarcinales/isolamento & purificação , Methanosarcinales/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Biodiversidade , Isótopos de Carbono/metabolismo , Ácido Carbônico/metabolismo , Análise por Conglomerados , Carvão Mineral , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Genes de RNAr , Alemanha , Marcação por Isótopo , Methanosarcinales/classificação , Methanosarcinales/genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
18.
ACS ES T Water ; 1(7): 1541-1554, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278380

RESUMO

Complex microbial communities in environmental systems play a key role in the detoxification of chemical contaminants by transforming them into less active metabolites or by complete mineralization. Biotransformation, i.e., transformation by microbes, is well understood for a number of priority pollutants, but a similar level of understanding is lacking for many emerging contaminants encountered at low concentrations and in complex mixtures across natural and engineered systems. Any advanced approaches aiming to reduce environmental exposure to such contaminants (e.g., novel engineered biological water treatment systems, design of readily degradable chemicals, or improved regulatory assessment strategies to determine contaminant persistence a priori) will depend on understanding the causal links among contaminant removal, the key driving agents of biotransformation at low concentrations (i.e., relevant microbes and their metabolic activities), and how their presence and activity depend on environmental conditions. In this Perspective, we present the current understanding and recent methodological advances that can help to identify such links, even in complex environmental microbiomes and for contaminants present at low concentrations in complex chemical mixtures. We discuss the ensuing insights into contaminant biotransformation across varying environments and conditions and ask how much closer we have come to designing improved approaches to reducing environmental exposure to contaminants.

19.
J Bacteriol ; 192(1): 295-306, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19854898

RESUMO

The highly enriched deltaproteobacterial culture N47 anaerobically oxidizes the polycyclic aromatic hydrocarbons naphthalene and 2-methylnaphthalene, with sulfate as the electron acceptor. Combined genome sequencing and liquid chromatography-tandem mass spectrometry-based shotgun proteome analyses were performed to identify genes and proteins involved in anaerobic aromatic catabolism. Proteome analysis of 2-methylnaphthalene-grown N47 cells resulted in the identification of putative enzymes catalyzing the anaerobic conversion of 2-methylnaphthalene to 2-naphthoyl coenzyme A (2-naphthoyl-CoA), as well as the reductive ring cleavage of 2-naphthoyl-CoA, leading to the formation of acetyl-CoA and CO(2). The glycyl radical-catalyzed fumarate addition to the methyl group of 2-methylnaphthalene is catalyzed by naphthyl-2-methyl-succinate synthase (Nms), composed of alpha-, beta-, and gamma-subunits that are encoded by the genes nmsABC. Located upstream of nmsABC is nmsD, encoding the Nms-activating enzyme, which harbors the characteristic [Fe(4)S(4)] cluster sequence motifs of S-adenosylmethionine radical enzymes. The bns gene cluster, coding for enzymes involved in beta-oxidation reactions converting naphthyl-2-methyl-succinate to 2-naphthoyl-CoA, was found four intervening open reading frames further downstream. This cluster consists of eight genes (bnsABCDEFGH) corresponding to 8.1 kb, which are closely related to genes for enzymes involved in anaerobic toluene degradation within the denitrifiers "Aromatoleum aromaticum" EbN1, Azoarcus sp. strain T, and Thauera aromatica. Another contiguous DNA sequence harbors the gene for 2-naphthoyl-CoA reductase (ncr) and 16 additional genes that were found to be expressed in 2-methylnaphthalene-grown cells. These genes code for enzymes that were supposed to catalyze the dearomatization and ring cleavage reactions converting 2-naphthoyl-CoA to acetyl-CoA and CO(2). Comparative sequence analysis of the four encoding subunits (ncrABCD) showed the gene product to have the closest similarity to the Azoarcus type of benzoyl-CoA reductase. The present work provides the first insight into the genetic basis of anaerobic 2-methylnaphthalene metabolism and delivers implications for understanding contaminant degradation.


Assuntos
Proteínas de Bactérias/metabolismo , Deltaproteobacteria/metabolismo , Genômica , Família Multigênica/genética , Naftalenos/metabolismo , Proteômica , Anaerobiose , Proteínas de Bactérias/genética , Carbono-Carbono Ligases/genética , Carbono-Carbono Ligases/metabolismo , Cromatografia Líquida , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Modelos Biológicos , Dados de Sequência Molecular , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/fisiologia , Filogenia , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Espectrometria de Massas em Tandem
20.
Environ Microbiol ; 12(2): 401-11, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19840104

RESUMO

The flow of carbon under sulfate-reducing conditions within a benzene-mineralizing enrichment culture was analysed using fully labelled [13C6]-benzene. Over 180 days of incubation, 95% of added 13C-benzene was released as 13C-carbon dioxide. DNA extracted from cultures that had degraded different amounts of unlabelled or 13C-labelled benzene was centrifuged in CsCl density gradients to identify 13C-benzene-assimilating organisms by density-resolved terminal restriction fragment length polymorphism analysis and cloning of 16S rRNA gene fragments. Two phylotypes showed significantly increased relative abundance of their terminal restriction fragments in 'heavy' fractions of 13C-benzene-incubated microcosms compared with a 12C-benzene-incubated control: a member of the Cryptanaerobacter/Pelotomaculum group within the Peptococcaceae, and a phylotype belonging to the Epsilonproteobacteria. The Cryptanaerobacter/Pelotomaculum phylotype was the most frequent sequence type. A small amount of 13C-methane was aceticlastically produced, as concluded from the linear relationship between methane production and benzene degradation and the detection of Methanosaetaceae as the only methanogens present. Other phylotypes detected but not 13C-labelled belong to several genera of sulfate-reducing bacteria, that may act as hydrogen scavengers for benzene oxidation. Our results strongly support the hypothesis that benzene is mineralized by a consortium consisting of syntrophs, hydrogenotrophic sulfate reducers and to a minor extent of aceticlastic methanogens.


Assuntos
Bactérias/metabolismo , Benzeno/metabolismo , Isótopos de Carbono , DNA Bacteriano/metabolismo , DNA Ribossômico/metabolismo , Epsilonproteobacteria/genética , Epsilonproteobacteria/metabolismo , Euryarchaeota/genética , Euryarchaeota/metabolismo , Genes de RNAr , Metano/metabolismo , Peptococcaceae/classificação , Peptococcaceae/genética , Peptococcaceae/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa