Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell ; 155(5): 1088-103, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24267891

RESUMO

ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors.


Assuntos
Replicação do DNA , Instabilidade Genômica , Proteína de Replicação A/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , Dano ao DNA/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Origem de Replicação
2.
Cell ; 150(4): 697-709, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22884692

RESUMO

Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathway that ubiquitylates histones after DNA breakage. We find that RNF168 can be saturated by increasing amounts of DSBs. Depletion of TRIP12 and UBR5 allows accumulation of RNF168 to supraphysiological levels, followed by massive spreading of ubiquitin conjugates and hyperaccumulation of ubiquitin-regulated genome caretakers such as 53BP1 and BRCA1. Thus, regulatory and proteolytic ubiquitylations are wired in a self-limiting circuit that promotes histone ubiquitylation near the DNA lesions but at the same time counteracts its excessive spreading to undamaged chromosomes. We provide evidence that this mechanism is vital for the homeostasis of ubiquitin-controlled events after DNA breakage and can be subverted during tumorigenesis.


Assuntos
Proteínas de Transporte/metabolismo , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Ubiquitina-Proteína Ligases/metabolismo , Alphapapillomavirus , Linhagem Celular , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/virologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Transcrição Gênica , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitinação
3.
Nature ; 574(7779): 571-574, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645724

RESUMO

To safeguard genome integrity in response to DNA double-strand breaks (DSBs), mammalian cells mobilize the neighbouring chromatin to shield DNA ends against excessive resection that could undermine repair fidelity and cause damage to healthy chromosomes1. This form of genome surveillance is orchestrated by 53BP1, whose accumulation at DSBs triggers sequential recruitment of RIF1 and the shieldin-CST-POLα complex2. How this pathway reflects and influences the three-dimensional nuclear architecture is not known. Here we use super-resolution microscopy to show that 53BP1 and RIF1 form an autonomous functional module that stabilizes three-dimensional chromatin topology at sites of DNA breakage. This process is initiated by accumulation of 53BP1 at regions of compact chromatin that colocalize with topologically associating domain (TAD) sequences, followed by recruitment of RIF1 to the boundaries between such domains. The alternating distribution of 53BP1 and RIF1 stabilizes several neighbouring TAD-sized structures at a single DBS site into an ordered, circular arrangement. Depletion of 53BP1 or RIF1 (but not shieldin) disrupts this arrangement and leads to decompaction of DSB-flanking chromatin, reduction in interchromatin space, aberrant spreading of DNA repair proteins, and hyper-resection of DNA ends. Similar topological distortions are triggered by depletion of cohesin, which suggests that the maintenance of chromatin structure after DNA breakage involves basic mechanisms that shape three-dimensional nuclear organization. As topological stabilization of DSB-flanking chromatin is independent of DNA repair, we propose that, besides providing a structural scaffold to protect DNA ends against aberrant processing, 53BP1 and RIF1 safeguard epigenetic integrity at loci that are disrupted by DNA breakage.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Instabilidade Genômica , Conformação de Ácido Nucleico , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/química , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas de Ligação a Telômeros/deficiência , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/deficiência , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
4.
Cell ; 136(3): 435-46, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19203579

RESUMO

DNA double-strand breaks (DSBs) not only interrupt the genetic information, but also disrupt the chromatin structure, and both impairments require repair mechanisms to ensure genome integrity. We showed previously that RNF8-mediated chromatin ubiquitylation protects genome integrity by promoting the accumulation of repair factors at DSBs. Here, we provide evidence that, while RNF8 is necessary to trigger the DSB-associated ubiquitylations, it is not sufficient to sustain conjugated ubiquitin in this compartment. We identified RNF168 as a novel chromatin-associated ubiquitin ligase with an ability to bind ubiquitin. We show that RNF168 interacts with ubiquitylated H2A, assembles at DSBs in an RNF8-dependent manner, and, by targeting H2A and H2AX, amplifies local concentration of lysine 63-linked ubiquitin conjugates to the threshold required for retention of 53BP1 and BRCA1. Thus, RNF168 defines a new pathway involving sequential ubiquitylations on damaged chromosomes and uncovers a functional cooperation between E3 ligases in genome maintenance.


Assuntos
Cromossomos/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estrutura Terciária de Proteína , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
5.
Mol Cell ; 64(6): 1127-1134, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984746

RESUMO

Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Ciclina E/genética , Quebras de DNA de Cadeia Dupla , DNA/genética , Osteossarcoma/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Reparo de DNA por Recombinação , Proteína da Polipose Adenomatosa do Colo/deficiência , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina E/metabolismo , DNA/metabolismo , Fase G1 , Expressão Gênica , Instabilidade Genômica , Humanos , Camundongos , Camundongos Knockout , Nocodazol/farmacologia , Osteossarcoma/metabolismo , Osteossarcoma/mortalidade , Osteossarcoma/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/antagonistas & inibidores , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Fase S , Estresse Fisiológico , Análise de Sobrevida
6.
Mol Cell ; 52(2): 206-20, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24055346

RESUMO

Although the general relevance of chromatin modifications for genotoxic stress signaling, cell-cycle checkpoint activation, and DNA repair is well established, how these modifications reach initial thresholds in order to trigger robust responses remains largely unexplored. Here, we identify the chromatin-associated scaffold attachment factor SAFB1 as a component of the DNA damage response and show that SAFB1 cooperates with histone acetylation to allow for efficient γH2AX spreading and genotoxic stress signaling. SAFB1 undergoes a highly dynamic exchange at damaged chromatin in a poly(ADP-ribose)-polymerase 1- and poly(ADP-ribose)-dependent manner and is required for unperturbed cell-cycle checkpoint activation and guarding cells against replicative stress. Altogether, our data reveal that transient recruitment of an architectural chromatin component is required in order to overcome physiological barriers by making chromatin permissive for DNA damage signaling, whereas the ensuing exclusion of SAFB1 may help prevent excessive signaling.


Assuntos
Cromatina/genética , Dano ao DNA , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas Associadas à Matriz Nuclear/genética , Receptores de Estrogênio/genética , Transdução de Sinais/genética , Acetilação , Western Blotting , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Microscopia de Fluorescência , Modelos Genéticos , Testes de Mutagenicidade , Proteínas Associadas à Matriz Nuclear/metabolismo , Fosforilação , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Interferência de RNA , Receptores de Estrogênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Nucleic Acids Res ; 43(10): 4950-61, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25916843

RESUMO

DNA double strand breaks (DSBs) formed during S phase are preferentially repaired by homologous recombination (HR), whereas G1 DSBs, such as those occurring during immunoglobulin class switch recombination (CSR), are repaired by non-homologous end joining (NHEJ). The DNA damage response proteins 53BP1 and BRCA1 regulate the balance between NHEJ and HR. 53BP1 promotes CSR in part by mediating synapsis of distal DNA ends, and in addition, inhibits 5' end resection. BRCA1 antagonizes 53BP1 dependent DNA end-blocking activity during S phase, which would otherwise promote mutagenic NHEJ and genome instability. Recently, it was shown that supra-physiological levels of the E3 ubiquitin ligase RNF168 results in the hyper-accumulation of 53BP1/BRCA1 which accelerates DSB repair. Here, we ask whether increased expression of RNF168 or 53BP1 impacts physiological versus mutagenic NHEJ. We find that the anti-resection activities of 53BP1 are rate-limiting for mutagenic NHEJ but not for physiological CSR. As heterogeneity in the expression of RNF168 and 53BP1 is found in human tumors, our results suggest that deregulation of the RNF168/53BP1 pathway could alter the chemosensitivity of BRCA1 deficient tumors.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Mutagênese , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteína BRCA1/genética , Células Cultivadas , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Switching de Imunoglobulina , Camundongos , Camundongos Knockout , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína de Replicação A/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
8.
J Biol Chem ; 288(23): 16579-16587, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23615962

RESUMO

Protein recruitment to DNA double-strand breaks (DSBs) relies on ubiquitylation of the surrounding chromatin by the RING finger ubiquitin ligases RNF8 and RNF168. Flux through this pathway is opposed by several deubiquitylating enzymes (DUBs), including OTUB1 and USP3. By analyzing the effect of individually overexpressing the majority of human DUBs on RNF8/RNF168-mediated 53BP1 retention at DSB sites, we found that USP44 and USP29 powerfully inhibited this response at the level of RNF168 accrual. Both USP44 and USP29 promoted efficient deubiquitylation of histone H2A, but unlike USP44, USP29 displayed nonspecific reactivity toward ubiquitylated substrates. Moreover, USP44 but not other H2A DUBs was recruited to RNF168-generated ubiquitylation products at DSB sites. Individual depletion of these DUBs only mildly enhanced accumulation of ubiquitin conjugates and 53BP1 at DSBs, suggesting considerable functional redundancy among cellular DUBs that restrict ubiquitin-dependent protein assembly at DSBs. Our findings implicate USP44 in negative regulation of the RNF8/RNF168 pathway and illustrate the usefulness of DUB overexpression screens for identification of antagonizers of ubiquitin-dependent cellular responses.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Linhagem Celular , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas de Ligação a DNA/genética , Enzimas Desubiquitinantes , Endopeptidases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Proteases Específicas de Ubiquitina
9.
Nucleic Acids Res ; 40(9): 3913-28, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22234878

RESUMO

Mdc1 is a large modular phosphoprotein scaffold that maintains signaling and repair complexes at double-stranded DNA break sites. Mdc1 is anchored to damaged chromatin through interaction of its C-terminal BRCT-repeat domain with the tail of γH2AX following DNA damage, but the role of the N-terminal forkhead-associated (FHA) domain remains unclear. We show that a major binding target of the Mdc1 FHA domain is a previously unidentified DNA damage and ATM-dependent phosphorylation site near the N-terminus of Mdc1 itself. Binding to this motif stabilizes a weak self-association of the FHA domain to form a tight dimer. X-ray structures of free and complexed Mdc1 FHA domain reveal a 'head-to-tail' dimerization mechanism that is closely related to that seen in pre-activated forms of the Chk2 DNA damage kinase, and which both positively and negatively influences Mdc1 FHA domain-mediated interactions in human cells prior to and following DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/química , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Células Cultivadas , Proteínas Cromossômicas não Histona/análise , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/análise , Dimerização , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fosfotreonina/metabolismo , Domínios e Motivos de Interação entre Proteínas , Treonina/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
10.
Nat Cell Biol ; 8(1): 37-45, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16327781

RESUMO

It is generally thought that the DNA-damage checkpoint kinases, ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), work independently of one another. Here, we show that ATM and the nuclease activity of meiotic recombination 11 (Mre11) are required for the processing of DNA double-strand breaks (DSBs) to generate the replication protein A (RPA)-coated ssDNA that is needed for ATR recruitment and the subsequent phosphorylation and activation of Chk1. Moreover, we show that efficient ATM-dependent ATR activation in response to DSBs is restricted to the S and G2 cell cycle phases and requires CDK kinase activity. Thus, in response to DSBs, ATR activation is regulated by ATM in a cell-cycle dependent manner.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Ciclo Celular , Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/química , Células HeLa , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteína de Replicação A/química , Proteína de Replicação A/metabolismo , Proteínas Supressoras de Tumor/química
11.
Nat Cell Biol ; 8(8): 870-6, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16862143

RESUMO

The cellular DNA-damage response is a signaling network that is vigorously activated by cytotoxic DNA lesions, such as double-strand breaks (DSBs). The DSB response is mobilized by the nuclear protein kinase ATM, which modulates this process by phosphorylating key players in these pathways. A long-standing question in this field is whether DSB formation affects chromatin condensation. Here, we show that DSB formation is followed by ATM-dependent chromatin relaxation. ATM's effector in this pathway is the protein KRAB-associated protein (KAP-1, also known as TIF1beta, KRIP-1 or TRIM28), previously known as a corepressor of gene transcription. In response to DSB induction, KAP-1 is phosphorylated in an ATM-dependent manner on Ser 824. KAP-1 is phosphorylated exclusively at the damage sites, from which phosphorylated KAP-1 spreads rapidly throughout the chromatin. Ablation of the phosphorylation site of KAP-1 leads to loss of DSB-induced chromatin decondensation and renders the cells hypersensitive to DSB-inducing agents. Knocking down KAP-1, or mimicking a constitutive phosphorylation of this protein, leads to constitutive chromatin relaxation. These results suggest that chromatin relaxation is a fundamental pathway in the DNA-damage response and identify its primary mediators.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Cromatina/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Repressoras/fisiologia , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Humanos , Microscopia de Fluorescência , Mutação/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína 28 com Motivo Tripartido , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Zinostatina/farmacologia
12.
Nature ; 450(7169): 509-14, 2007 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-17965729

RESUMO

In the S and G2 phases of the cell cycle, DNA double-strand breaks (DSBs) are processed into single-stranded DNA, triggering ATR-dependent checkpoint signalling and DSB repair by homologous recombination. Previous work has implicated the MRE11 complex in such DSB-processing events. Here, we show that the human CtIP (RBBP8) protein confers resistance to DSB-inducing agents and is recruited to DSBs exclusively in the S and G2 cell-cycle phases. Moreover, we reveal that CtIP is required for DSB resection, and thereby for recruitment of replication protein A (RPA) and the protein kinase ATR to DSBs, and for the ensuing ATR activation. Furthermore, we establish that CtIP physically and functionally interacts with the MRE11 complex, and that both CtIP and MRE11 are required for efficient homologous recombination. Finally, we reveal that CtIP has sequence homology with Sae2, which is involved in MRE11-dependent DSB processing in yeast. These findings establish evolutionarily conserved roles for CtIP-like proteins in controlling DSB resection, checkpoint signalling and homologous recombination.


Assuntos
Proteínas de Transporte/metabolismo , Reparo do DNA , DNA/metabolismo , Proteínas Nucleares/metabolismo , Recombinação Genética , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sequência Conservada , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Endonucleases , Evolução Molecular , Fase G2 , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/metabolismo , Recombinação Genética/efeitos dos fármacos , Fase S , Proteínas de Saccharomyces cerevisiae/química
13.
Nat Biotechnol ; 40(8): 1231-1240, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35590073

RESUMO

Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics (DVP), which combines artificial-intelligence-driven image analysis of cellular phenotypes with automated single-cell or single-nucleus laser microdissection and ultra-high-sensitivity mass spectrometry. DVP links protein abundance to complex cellular or subcellular phenotypes while preserving spatial context. By individually excising nuclei from cell culture, we classified distinct cell states with proteomic profiles defined by known and uncharacterized proteins. In an archived primary melanoma tissue, DVP identified spatially resolved proteome changes as normal melanocytes transition to fully invasive melanoma, revealing pathways that change in a spatial manner as cancer progresses, such as mRNA splicing dysregulation in metastatic vertical growth that coincides with reduced interferon signaling and antigen presentation. The ability of DVP to retain precise spatial proteomic information in the tissue context has implications for the molecular profiling of clinical samples.


Assuntos
Melanoma , Proteômica , Humanos , Microdissecção e Captura a Laser/métodos , Espectrometria de Massas/métodos , Melanoma/genética , Proteoma/química , Proteômica/métodos
14.
Nat Cell Biol ; 5(3): 255-60, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12598907

RESUMO

Cell cycle checkpoints are signal transduction pathways activated after DNA damage to protect genomic integrity. Dynamic spatiotemporal coordination is a vital, but poorly understood aspect, of these checkpoints. Here, we provide evidence for a strikingly different behaviour of Chk2 versus Nbs1, key mediators of the ataxia-telangiecatesia-mutated (ATM)-controlled checkpoint pathways induced by DNA double-strand breaks (DSBs). In live human cells with DSBs restricted to small sub-nuclear areas, Nbs1 was rapidly recruited to the damaged regions and underwent a dynamic exchange in the close vicinity of the DSB sites. In contrast, Chk2 continued to rapidly move throughout the entire nucleus, irrespective of DNA damage and including the DSB-free areas. Although phosphorylation of Chk2 by ATM occurred exclusively at the DSB sites, forced immobilization of Chk2 to spatially restricted, DSB-containing nuclear areas impaired its stimulating effect on p53-dependent transcription. These results unravel a dynamic nature of Nbs1 interaction with DSB lesions and identify Chk2 as a candidate transmitter of the checkpoint signal, allowing for a coordinated pan-nuclear response to focal DNA damage.


Assuntos
Ciclo Celular/genética , Dano ao DNA , Proteínas de Ciclo Celular/fisiologia , Humanos , Fosforilação , Células Tumorais Cultivadas
15.
Nat Cell Biol ; 4(4): 317-22, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11901424

RESUMO

We show that human Cdc14A phosphatase interacts with interphase centrosomes, and that this interaction is independent of microtubules and Cdc14A phosphatase activity, but requires active nuclear export. Disrupting the nuclear export signal (NES) led to Cdc14A being localized in nucleoli, which in unperturbed cells selectively contain Cdc14B (ref. 1). Conditional overproduction of Cdc14A, but not its phosphatase-dead or NES-deficient mutants, or Cdc14B, resulted in premature centrosome splitting and formation of supernumerary mitotic spindles. In contrast, downregulation of endogenous Cdc14A by short inhibitory RNA duplexes (siRNA) induced mitotic defects including impaired centrosome separation and failure to undergo productive cytokinesis. Consequently, both overexpression and downregulation of Cdc14A caused aberrant chromosome partitioning into daughter cells. These results indicate that Cdc14A is a physiological regulator of the centrosome duplication cycle, which, when disrupted, can lead to genomic instability in mammalian cells.


Assuntos
Centrossomo/metabolismo , Cromossomos/ultraestrutura , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Tirosina Fosfatases , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Divisão Celular , Linhagem Celular , Núcleo Celular/metabolismo , Centrossomo/ultraestrutura , Regulação para Baixo , Citometria de Fluxo , Células HeLa , Humanos , Immunoblotting , Cinética , Microscopia de Fluorescência , Microtúbulos/ultraestrutura , Mitose , Mutação , Plasmídeos/metabolismo , RNA/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Tempo , Transgenes
16.
Nat Cell Biol ; 6(9): 884-91, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15311285

RESUMO

Entry into mitosis occurs after activation of Cdk1, resulting in chromosome condensation in the nucleus and centrosome separation, as well as increased microtubule nucleation activity in the cytoplasm. The active cyclin-B1-Cdk1 complex first appears at the centrosome, suggesting that the centrosome may facilitate the activation of mitotic regulators required for the commitment of cells to mitosis. However, the signalling pathways involved in controlling the initial activation of Cdk1 at the centrosome remain largely unknown. Here, we show that human Chk1 kinase localizes to interphase, but not mitotic, centrosomes. Chemical inhibition of Chk1 resulted in premature centrosome separation and activation of centrosome-associated Cdk1. Forced immobilization of kinase-inactive Chk1 to centrosomes also resulted in premature Cdk1 activation. Conversely, under such conditions wild-type Chk1 impaired activation of centrosome-associated Cdk1, thereby resulting in DNA endoreplication and centrosome amplification. Activation of centrosomal Cdk1 in late prophase seemed to be mediated by cytoplasmic Cdc25B, whose activity is controlled by centrosome-associated Chk1. These results suggest that centrosome-associated Chk1 shields centrosomal Cdk1 from unscheduled activation by cytoplasmic Cdc25B, thereby contributing to proper timing of the initial steps of cell division, including mitotic spindle formation.


Assuntos
Centrossomo/enzimologia , Ciclinas/metabolismo , Proteínas Quinases/fisiologia , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/fisiologia , Proteínas de Ciclo Celular/fisiologia , Divisão Celular , Linhagem Celular , Quinase 1 do Ponto de Checagem , Ciclina B/metabolismo , Ciclina B1 , Ativação Enzimática , Humanos , Interfase , Microscopia Confocal , Ligação Proteica , Proteínas Quinases/metabolismo , Fuso Acromático , Fosfatases cdc25/fisiologia
17.
J Cell Biol ; 173(2): 195-206, 2006 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-16618811

RESUMO

We show that DNA double-strand breaks (DSBs) induce complex subcompartmentalization of genome surveillance regulators. Chromatin marked by gamma-H2AX is occupied by ataxia telangiectasia-mutated (ATM) kinase, Mdc1, and 53BP1. In contrast, repair factors (Rad51, Rad52, BRCA2, and FANCD2), ATM and Rad-3-related (ATR) cascade (ATR, ATR interacting protein, and replication protein A), and the DNA clamp (Rad17 and -9) accumulate in subchromatin microcompartments delineated by single-stranded DNA (ssDNA). BRCA1 and the Mre11-Rad50-Nbs1 complex interact with both of these compartments. Importantly, some core DSB regulators do not form cytologically discernible foci. These are further subclassified to proteins that connect DSBs with the rest of the nucleus (Chk1 and -2), that assemble at unprocessed DSBs (DNA-PK/Ku70), and that exist on chromatin as preassembled complexes but become locally modified after DNA damage (Smc1/Smc3). Finally, checkpoint effectors such as p53 and Cdc25A do not accumulate at DSBs at all. We propose that subclassification of DSB regulators according to their residence sites provides a useful framework for understanding their involvement in diverse processes of genome surveillance.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Dano ao DNA , Reparo do DNA , DNA/metabolismo , Genoma , Animais , Proteína BRCA1/fisiologia , Linhagem Celular , Células Cultivadas , Quinase 1 do Ponto de Checagem , Cromatina/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , DNA/efeitos da radiação , Humanos , Lasers , Proteínas Nucleares/fisiologia , Fosforilação , Proteínas Quinases/fisiologia
18.
Nature ; 434(7035): 864-70, 2005 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-15829956

RESUMO

During the evolution of cancer, the incipient tumour experiences 'oncogenic stress', which evokes a counter-response to eliminate such hazardous cells. However, the nature of this stress remains elusive, as does the inducible anti-cancer barrier that elicits growth arrest or cell death. Here we show that in clinical specimens from different stages of human tumours of the urinary bladder, breast, lung and colon, the early precursor lesions (but not normal tissues) commonly express markers of an activated DNA damage response. These include phosphorylated kinases ATM and Chk2, and phosphorylated histone H2AX and p53. Similar checkpoint responses were induced in cultured cells upon expression of different oncogenes that deregulate DNA replication. Together with genetic analyses, including a genome-wide assessment of allelic imbalances, our data indicate that early in tumorigenesis (before genomic instability and malignant conversion), human cells activate an ATR/ATM-regulated DNA damage response network that delays or prevents cancer. Mutations compromising this checkpoint, including defects in the ATM-Chk2-p53 pathway, might allow cell proliferation, survival, increased genomic instability and tumour progression.


Assuntos
Transformação Celular Neoplásica , Dano ao DNA , Neoplasias/patologia , Neoplasias/prevenção & controle , Desequilíbrio Alélico/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Quinase do Ponto de Checagem 2 , Ciclina E/genética , Ciclina E/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição E2F , Ativação Enzimática , Genes p53/genética , Instabilidade Genômica , Humanos , Mutação/genética , Neoplasias/enzimologia , Neoplasias/genética , Oncogenes/genética , Oncogenes/fisiologia , Fosforilação , Polimorfismo de Nucleotídeo Único/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
19.
Nat Commun ; 12(1): 5893, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625544

RESUMO

Despite the involvement of Poly(ADP-ribose) polymerase-1 (PARP1) in many important biological pathways, the target residues of PARP1-mediated ADP-ribosylation remain ambiguous. To explicate the ADP-ribosylation regulome, we analyze human cells depleted for key regulators of PARP1 activity, histone PARylation factor 1 (HPF1) and ADP-ribosylhydrolase 3 (ARH3). Using quantitative proteomics, we characterize 1,596 ADP-ribosylation sites, displaying up to 1000-fold regulation across the investigated knockout cells. We find that HPF1 and ARH3 inversely and homogenously regulate the serine ADP-ribosylome on a proteome-wide scale with consistent adherence to lysine-serine-motifs, suggesting that targeting is independent of HPF1 and ARH3. Notably, we do not detect an HPF1-dependent target residue switch from serine to glutamate/aspartate under the investigated conditions. Our data support the notion that serine ADP-ribosylation mainly exists as mono-ADP-ribosylation in cells, and reveal a remarkable degree of histone co-modification with serine ADP-ribosylation and other post-translational modifications.


Assuntos
Difosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas Nucleares/metabolismo , ADP-Ribosilação , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Dano ao DNA , Técnicas de Inativação de Genes , Glicosídeo Hidrolases/genética , Histonas/metabolismo , Humanos , Proteínas Nucleares/genética , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Proteômica , Serina/metabolismo
20.
J Cell Biol ; 170(2): 201-11, 2005 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-16009723

RESUMO

53BP1 is a key component of the genome surveillance network activated by DNA double strand breaks (DSBs). Despite its known accumulation at the DSB sites, the spatiotemporal aspects of 53BP1 interaction with DSBs and the role of other DSB regulators in this process remain unclear. Here, we used real-time microscopy to study the DSB-induced redistribution of 53BP1 in living cells. We show that within minutes after DNA damage, 53BP1 becomes progressively, yet transiently, immobilized around the DSB-flanking chromatin. Quantitative imaging of single cells revealed that the assembly of 53BP1 at DSBs significantly lagged behind Mdc1/NFBD1, another DSB-interacting checkpoint mediator. Furthermore, short interfering RNA-mediated ablation of Mdc1/NFBD1 drastically impaired 53BP1 redistribution to DSBs and triggered premature dissociation of 53BP1 from these regions. Collectively, these in vivo measurements identify Mdc1/NFBD1 as a key upstream determinant of 53BP1's interaction with DSBs from its dynamic assembly at the DSB sites through sustained retention within the DSB-flanking chromatin up to the recovery from the checkpoint.


Assuntos
Dano ao DNA , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Nucleares/fisiologia , Fosfoproteínas/fisiologia , Transativadores/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Cromatina/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Fluorescência Verde/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Microscopia Confocal , Proteínas Nucleares/genética , Fosfoproteínas/genética , Ligação Proteica , Transporte Proteico , RNA Interferente Pequeno/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/fisiologia , Transativadores/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa