Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(45): 13934-9, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26508641

RESUMO

The fundamental features of growth may be universal, because growth trajectories of most animals are very similar, but a unified mechanistic theory of growth remains elusive. Still needed is a synthetic explanation for how and why growth rates vary as body size changes, both within individuals over their ontogeny and between populations and species over their evolution. Here, we use Bertalanffy growth equations to characterize growth of ray-finned fishes in terms of two parameters, the growth rate coefficient, K, and final body mass, m∞. We derive two alternative empirically testable hypotheses and test them by analyzing data from FishBase. Across 576 species, which vary in size at maturity by almost nine orders of magnitude, K scaled as [Formula: see text]. This supports our first hypothesis that growth rate scales as [Formula: see text] as predicted by metabolic scaling theory; it implies that species that grow to larger mature sizes grow faster as juveniles. Within fish species, however, K scaled as [Formula: see text]. This supports our second hypothesis, which predicts that growth rate scales as [Formula: see text] when all juveniles grow at the same rate. The unexpected disparity between across- and within-species scaling challenges existing theoretical interpretations. We suggest that the similar ontogenetic programs of closely related populations constrain growth to [Formula: see text] scaling, but as species diverge over evolutionary time they evolve the near-optimal [Formula: see text] scaling predicted by metabolic scaling theory. Our findings have important practical implications because fish supply essential protein in human diets, and sustainable yields from wild harvests and aquaculture depend on growth rates.


Assuntos
Peixes/crescimento & desenvolvimento , Modelos Teóricos , Animais , Peixes/genética
2.
R Soc Open Sci ; 5(8): 180453, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30225033

RESUMO

Teleosts such as tunas and billfish lay millions of tiny eggs weighing on the order of 0.001 g, whereas chondrichthyes such as sharks and rays produce a few eggs or live offspring weighing about 2% of adult body mass, as much as 10 000 g in some species. Why are the strategies so extreme, and why are intermediate ones absent? Building on previous work, we show quantitatively how offspring size reflects the relationship between growth and death rates. We construct fitness contours as functions of offspring size and number, and show how these can be derived from juvenile growth and survivorship curves. Convex contours, corresponding to Pearl Type 1 and 2 survivorship curves, select for extremes, either miniscule or large offspring; concave contours select for offspring of intermediate size. Of particular interest are what we call critical straight-line fitness contours, corresponding to log-linear Pearl Type 3 survivorship curves, which separate regimes that select for opposite optimal offspring sizes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa