Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 623(7987): 502-508, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968524

RESUMO

The capability to reach ultracold atomic temperatures in compact instruments has recently been extended into space1,2. Ultracold temperatures amplify quantum effects, whereas free fall allows further cooling and longer interactions time with gravity-the final force without a quantum description. On Earth, these devices have produced macroscopic quantum phenomena such as Bose-Einstein condensates (BECs), superfluidity, and strongly interacting quantum gases3. Terrestrial quantum sensors interfering the superposition of two ultracold atomic isotopes have tested the universality of free fall (UFF), a core tenet of Einstein's classical gravitational theory, at the 10-12 level4. In space, cooling the elements needed to explore the rich physics of strong interactions or perform quantum tests of the UFF has remained elusive. Here, using upgraded hardware of the multiuser Cold Atom Lab (CAL) instrument aboard the International Space Station (ISS), we report, to our knowledge, the first simultaneous production of a dual-species BEC in space (formed from 87Rb and 41K), observation of interspecies interactions, as well as the production of 39K ultracold gases. Operating a single laser at a 'magic wavelength' at which Rabi rates of simultaneously applied Bragg pulses are equal, we have further achieved the first spaceborne demonstration of simultaneous atom interferometry with two atomic species (87Rb and 41K). These results are an important step towards quantum tests of UFF in space and will allow scientists to investigate aspects of few-body physics, quantum chemistry and fundamental physics in new regimes without the perturbing asymmetry of gravity.

2.
Opt Express ; 27(25): 36611-36624, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31873436

RESUMO

We demonstrate partial-transfer absorption imaging as a technique for repeatedly imaging an ultracold atomic ensemble with minimal perturbation. We prepare an atomic cloud in a state that is dark to the imaging light. We then use a microwave pulse to coherently transfer a small fraction of the ensemble to a bright state, which we image using in situ absorption imaging. The amplitude or duration of the microwave pulse controls the fractional transfer from the dark to the bright state. For small transfer fractions, we can image the atomic cloud up to 50 times before it is depleted. As a sample application, we repeatedly image an atomic cloud oscillating in a dipole trap to measure the trap frequency.

3.
Nature ; 561(7721): 43-44, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30185960

Assuntos
Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa