Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(1): 33-52, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37731059

RESUMO

Chromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure. In this study, low-Pi treatment led to greater chromatin volume. Furthermore, low-Pi stress increased the insulation score and the number of TAD-like domains, but the effects on the A/B compartment were not obvious. The methylation levels of target sites (hereafter as RdDM levels) peaked at specific TAD-like boundaries, whereas RdDM peak levels at conserved TAD-like boundaries shifted and decreased sharply. The distribution pattern of RdDM sites originating from the Helitron transposons matched that of genome-wide RdDM sites near TAD-like boundaries. RdDM pathway genes were upregulated in the middle or early stages and downregulated in the later stages under low-Pi conditions. The RdDM pathway mutant ddm1a showed increased tolerance to low-Pi stress, with shortened and thickened roots contributing to higher Pi uptake from the shallow soil layer. ChIP-seq results revealed that ZmDDM1A could bind to Pi- and root development-related genes. Strong associations were found between interacting genes in significantly different chromatin-interaction regions and root traits. These findings not only expand the mechanisms by which plants respond to low-Pi stress through the RdDM pathway but also offer a crucial framework for the analysis of biological issues using 3D genomics.


Assuntos
Cromatina , Zea mays , Cromatina/genética , Zea mays/genética , Metilação de DNA , Montagem e Desmontagem da Cromatina/genética , Inativação Gênica , Regulação da Expressão Gênica de Plantas
2.
Theor Appl Genet ; 137(7): 172, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935162

RESUMO

Phosphorus (P) is an essential element for plant growth, and its deficiency can cause decreased crop yield. This study systematically evaluated the low-phosphate (Pi) response traits in a large population at maturity and seedling stages, and explored candidate genes and their interrelationships with specific traits. The results revealed a greater sensitivity of seedling maize to low-Pi stress compared to that at maturity stage. The phenotypic response patterns to low-Pi stress at different stages were independent. Chlorophyll content was found to be a potential indicator for screening low-Pi-tolerant materials in the field. A total of 2900 and 1446 significantly associated genes at the maturity and seedling stages were identified, respectively. Among these genes, 972 were uniquely associated with maturity traits, while 330 were specifically detected at the seedling stage under low-Pi stress. Moreover, 768 and 733 genes were specifically associated with index values (low-Pi trait/normal-Pi trait) at maturity and seedling stage, respectively. Genetic network diagrams showed that the low-Pi response gene Zm00001d022226 was specifically associated with multiple primary P-related traits under low-Pi conditions. A total of 963 out of 2966 genes specifically associated with traits under low-Pi conditions or index values were found to be induced by low-Pi stress. Notably, ZmSPX4.1 and ZmSPX2 were sharply up-regulated in response to low-Pi stress across different lines or tissues. These findings advance our understanding of maize's response to low-Pi stress at different developmental stages, shedding light on the genes and pathways implicated in this response.


Assuntos
Fenótipo , Fósforo , Plântula , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/genética , Fósforo/metabolismo , Genes de Plantas , Estudo de Associação Genômica Ampla , Clorofila/metabolismo , Locos de Características Quantitativas , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Polimorfismo de Nucleotídeo Único
3.
Theor Appl Genet ; 137(7): 158, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864891

RESUMO

Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.


Assuntos
Fósforo , Amido , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Amido/metabolismo , Fósforo/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Fenótipo
4.
Zygote ; 31(6): 596-604, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37969109

RESUMO

This study aimed to investigate the optimal frozen embryo transfer (FET) strategy for recurrent implantation failure (RIF) patients with three consecutive failed cleaved embryo implantations and no blastocyst preservation. This retrospective analysis was divided into three groups based on the FET strategy: thawed day 3 embryo transfer (D3 FET group); and extended culture of frozen-thawed day 3 embryos to day 5 blastocysts transfer (D3-D5 FET group); thawed blastocyst transfer (D5 FET group). Transplant cycle data were compared between the three groups. In total, 43.8% of vitrified-thawed cleavage embryos developed into blastocysts. Analysis of the three transplantation strategies showed that, compared with the D3 FET group, D3-D5 had a significantly better hCG-positivity rate and live-birth rate (P < 0.05). Pregnancy outcomes in the D3-D5 FET group and D5 FET group were similar regarding hCG-positivity rate, implantation rate, clinical pregnancy rate, and live-birth rate. Our findings propose two potentially valuable transfer strategies for patients experiencing repeated implantation failures. The D3-D5 FET approach presents a greater potential for selecting promising embryos in cases without blastocyst preservation; however, this strategy does entail the risk of cycle cancellation. Conversely, in instances where blastocyst preservation is an option, prioritizing consideration of the D5 FET strategy is recommended.


Assuntos
Criopreservação , Transferência Embrionária , Feminino , Gravidez , Humanos , Congelamento , Estudos Retrospectivos , Taxa de Gravidez , Implantação do Embrião , Blastocisto
5.
J Assist Reprod Genet ; 40(7): 1747-1754, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37273165

RESUMO

PURPOSE: In this study, we aimed to identify sterility-related variants in a Chinese pedigree with male infertility and to reveal the different phenotypes and intracytoplasmic sperm injection (ICSI) outcomes of the affected members. METHODS: Physical examinations were performed on male patients. G-band karyotype analysis, copy number variation sequencing, and quantitative fluorescent PCR were conducted to detect common chromosomal disorders in the probands. Whole-exome sequencing and Sanger sequencing were applied to identify the pathogenic genes and the protein expression changes caused by the very mutation were identified by Western Blot in vitro. RESULTS: A novel nonsense mutation (c.908C > G: p.S303*) in the ADGRG2 was identified in all infertile male patients of the pedigree, which was inherited from their mothers. This variant was absent from the human genome databases. This mutation was also unexpectedly found in a male member with normal reproductive capability. Members with the mutation had different genitalia phenotypes, ranging from normal to dilated phenotypes of the vas deferens, spermatic veins and epididymis. There was a truncated ADGRG2 protein in vitro after mutation. Of the three patients' wives treated with ICSI, only one successfully gave birth. CONCLUSIONS: Our study is the first to report the c.908C > G: p.S303* mutation in the ADGRG2 in an X-linked azoospermia pedigree and is the first to report normal fertility in a member with this mutation, expanding the mutation spectrum and phenotype spectrum of this gene. In our study, ISCI had a success rate of only one-third in couples including men with azoospermia with this mutation.


Assuntos
Azoospermia , Infertilidade Masculina , Humanos , Masculino , Azoospermia/genética , Variações do Número de Cópias de DNA , População do Leste Asiático , Infertilidade Masculina/genética , Mutação/genética , Linhagem , Sêmen
6.
Mol Breed ; 42(2): 7, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37309320

RESUMO

The discovery and characterization of the opaque endosperm gene provide ideas and resources for the production and application of maize. We found an o213 mutant whose phenotype was opaque and shrunken endosperm with semi-dwarf plant height. The protein, lipid, and starch contents in the o213 endosperm were significantly decreased, while the free amino acid content in the o213 endosperm significantly increased. The aspartic acid, asparagine, and lysine contents were raised in the o213 endosperm by 6.5-, 8.5-, and 1.7-fold, respectively. Genetic analysis showed that this o213 mutant is a recessive single-gene mutation. The position mapping indicated that o213 is located in a 468-kb region that contains 11 protein-encoding genes on the long arm of chromosome 5. The coding sequence analysis of candidate genes between the WT and o213 showed that ZmYSL2 had only a single-base substitution (A-G) in the fifth exon, which caused methionine substitution to valine. Sequence analysis and the allelic test showed that o213 is a new mutant allele of ZmYSL2. The qRT-PCR results indicated that o213 is highly expressed in the stalks and anthers. Subcellular localization studies showed that o213 is a membrane transporter. In the variation analysis of o213, the amplification of 65 inbred lines in GWAS showed that this 3-bp deletion of the first exon of o213 was found only in temperate inbred lines, implying that the gene was artificially affected in the selection process. Our results suggest that o213 is an important endosperm development gene and may serve as a genetic resource. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01278-9.

7.
Curr Issues Mol Biol ; 43(2): 1142-1155, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34563050

RESUMO

A deficiency in the macronutrient phosphate (Pi) brings about various changes in plants at the morphological, physiological and molecular levels. However, the molecular mechanism for regulating Pi homeostasis in response to low-Pi remains poorly understood, particularly in maize (Zea mays L.), which is a staple crop and requires massive amounts of Pi. Therefore, in this study, we performed expression profiling of the shoots and roots of maize seedlings with Pi-tolerant genotype at both the transcriptomic and proteomic levels using RNA sequencing and isobaric tags for relative and absolute quantitation (iTRAQ). We identified 1944 differentially expressed transcripts and 340 differentially expressed proteins under low-Pi conditions. Most of the differentially expressed genes were clustered as regulators, such as transcription factors involved in the Pi signaling pathway at the transcript level. However, the more functional and metabolism-related genes showed expression changes at the protein level. Moreover, under low-Pi conditions, Pi transporters and phosphatases were specifically induced in the roots at both the transcript and protein levels, and increased amounts of mRNA and protein of two purple acid phosphatases (PAPs) and one UDP-sulfoquinovose synthase (SQD) were specifically detected in the roots. The new insights provided by this study will help to improve the P-utilization efficiency of maize.


Assuntos
Fosfatos/deficiência , Proteoma , Transdução de Sinais , Transcriptoma , Zea mays/metabolismo , Perfilação da Expressão Gênica , Genótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteômica , Plântula/genética , Plântula/metabolismo , Estresse Fisiológico , Zea mays/genética
8.
BMC Plant Biol ; 21(1): 93, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579187

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) play important roles in essential biological processes. However, our understanding of lncRNAs as competing endogenous RNAs (ceRNAs) and their responses to nitrogen stress is still limited. RESULTS: Here, we surveyed the lncRNAs and miRNAs in maize inbred line P178 leaves and roots at the seedling stage under high-nitrogen (HN) and low-nitrogen (LN) conditions using lncRNA-Seq and small RNA-Seq. A total of 894 differentially expressed lncRNAs and 38 different miRNAs were identified. Co-expression analysis found that two lncRNAs and four lncRNA-targets could competitively combine with ZmmiR159 and ZmmiR164, respectively. To dissect the genetic regulatory by which lncRNAs might enable adaptation to limited nitrogen availability, an association mapping panel containing a high-density single-nucleotide polymorphism (SNP) array (56,110 SNPs) combined with variable LN tolerant-related phenotypes obtained from hydroponics was used for a genome-wide association study (GWAS). By combining GWAS and RNA-Seq, 170 differently expressed lncRNAs within the range of significant markers were screened. Moreover, 40 consistently LN-responsive genes including those involved in glutamine biosynthesis and nitrogen acquisition in root were identified. Transient expression assays in Nicotiana benthamiana demonstrated that LNC_002923 could inhabit ZmmiR159-guided cleavage of Zm00001d015521. CONCLUSIONS: These lncRNAs containing trait-associated significant SNPs could consider to be related to root development and nutrient utilization. Taken together, the results of our study can provide new insights into the potential regulatory roles of lncRNAs in response to LN stress, and give valuable information for further screening of candidates as well as the improvement of maize resistance to LN stress.


Assuntos
Nitrogênio/deficiência , RNA Longo não Codificante/genética , RNA de Plantas/genética , Zea mays/genética , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Glutamina/biossíntese , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma
9.
Opt Express ; 29(22): 36430-36441, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809053

RESUMO

The past few years have witnessed the great success of artificial metamaterials with effective medium parameters to control electromagnetic waves. Herein, we present a scheme to achieve broadband microwave low specular reflection with uniform backward scattering by using a coding metasurface, which is composed of a rational layout of subwavelength coding elements, via an optimization method. We propose coding elements with high transparency based on ultrathin doped silver, which are capable of generating large phase differences (∼180°) over a wide frequency range by designing geometric structures. The electromagnetic diffusion of the coding metasurface originates from the destructive interference of the reflected waves in various directions. Numerical simulations and experimental results demonstrate that low reflection is achieved from 12 to 18 GHz with a high angular insensitivity of up to ±40° for both transverse electric and transverse magnetic polarizations. Furthermore, the excellent visible transparency of the encoding metasurface is promising for various microwave and optical applications such as electronic surveillance, electromagnetic interference shielding, and radar cross-section reduction.

10.
J Anim Physiol Anim Nutr (Berl) ; 105(6): 1063-1074, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33817860

RESUMO

This study aimed to investigate the protective effects and underlying mechanism of seaweed polysaccharide (SWP) on intestinal epithelial barrier dysfunction induced by E. coli in an IPEC-J2 model. A preliminary study was done to screen optimum SWP concentrations by cell viability, cytotoxicity, apoptosis and proliferation evaluation. The regular study was conducted to evaluate the protective effects of SWP against E. coli challenge via the analysis of transepithelial electrical resistance (TEER), tight junction proteins, NF-κB signalling pathway, proinflammatory cytokines and the E. coli adhesion and invasion. Our results show that 4 h E. coli challenge down-regulated tight junction proteins expression, decreased TEER, activated NF-κB signalling pathway and increased proinflammatory response, which indicates that the E. coli infection model was well-established. Pre-treatment with 240 µg/ml SWP for 24 h alleviated the 4 h E. coli -induced intestinal epithelial barrier dysfunction, as evidenced by the up-regulated expression of Occludin, Claudin-1 and ZO-1 at both mRNA and protein level and the increased TEER of IPEC-J2 cells. Pre-incubation with 240 µg/ml SWP for 24 h inhibited the activation of the NF-κB signalling pathway by 4 h E. coli challenge, including the decreased mRNA expression of TLR-4, MyD88, IκBα, p-65, as well as the reduced ratio of protein expression of p-p65/p65. Also, pre-treatment with 240 µg/ml SWP for 24 h decreased proinflammatory response (IL-6 and TNF-α) induced by 4 h E. coli challenge and decreased the E. coli adhesion and invasion. In conclusion, SWP mitigated intestinal barrier dysfunction caused by E. coli through NF-κB pathway in IPEC-J2 cells and 240 µg/ml SWP exhibited better effect. Our results also provide a fundamental basis for SWP in reducing post-weaning diarrhoea of weaned piglets, especially under E. coli -infected or in-feed antibiotic-free conditions.


Assuntos
Escherichia coli Enterotoxigênica , Alga Marinha , Animais , Linhagem Celular , Células Epiteliais , Mucosa Intestinal , NF-kappa B/genética , Polissacarídeos/farmacologia , Suínos
11.
Plant J ; 97(5): 947-969, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472798

RESUMO

Inorganic phosphorus (Pi) is an essential element in numerous metabolic reactions and signaling pathways, but the molecular details of these pathways remain largely unknown. In this study, metabolite profiles of maize (Zea mays L.) leaves and roots were compared between six low-Pi-sensitive lines and six low-Pi-tolerant lines under Pi-sufficient and Pi-deficient conditions to identify pathways and genes associated with the low-Pi stress response. Results showed that under Pi deprivation the concentrations of nucleic acids, organic acids and sugars were increased, but that the concentrations of phosphorylated metabolites, certain amino acids, lipid metabolites and nitrogenous compounds were decreased. The levels of secondary metabolites involved in plant immune reactions, including benzoxazinoids and flavonoids, were significantly different in plants grown under Pi-deficient conditions. Among them, the 11 most stable metabolites showed significant differences under low- and normal-Pi conditions based on the coefficient of variation (CV). Isoleucine and alanine were the most stable metabolites for the identification of Pi-sensitive and Pi-resistant maize inbred lines. With the significant correlation between morphological traits and metabolites, five low-Pi-responding consensus genes associated with morphological traits and simultaneously involved in metabolic pathways were mined by combining metabolites profiles and genome-wide association study (GWAS). The consensus genes induced by Pi deficiency in maize seedlings were also validated by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Moreover, these genes were further validated in a recombinant inbred line (RIL) population, in which the glucose-6-phosphate-1-epimerase encoding gene mediated yield and correlated traits to phosphorus availability. Together, our results provide a framework for understanding the metabolic processes underlying Pi-deficient responses and give multiple insights into improving the efficiency of Pi use in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Fósforo/deficiência , Proteínas de Plantas/metabolismo , Zea mays/fisiologia , Metabolômica , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plântula/genética , Plântula/fisiologia , Estresse Fisiológico , Zea mays/genética
12.
Sci Rep ; 14(1): 1127, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212436

RESUMO

The urban street is a congested environment that contains a large number of occluded and size-differentiated objects. Aiming at the problems of the loss of the target to be detected and low detection accuracy resulting from this situation, a newly improved algorithm, based on YOLOv4, DCYOLO is proposed. Firstly, a Difference sensitive network (DSN) is introduced to extract the edge features of objects from the original image. Then, assign the edge features back to increase the edge intensity of the object in the original image and ultimately improve the detection performance. Secondly, the feature fusion module (CFFB) based on context information is introduced to realize the cross-scale fusion of shallow fine-grained features and deep-level features, to strengthen the cross-scale semantic information fusion of feature maps and eventually improve the performance of object detection. At last, in the network prediction part, the SIOU loss function replaces the original CIOU loss function to improve the convergence speed and accuracy of object detection. The experiments based on MS COCO 2017 and self-made datasets show that, compared with the YOLOv4, the detection accuracy of DCYOLO models is greatly improved with an increase of 9.1 percentage points in AP and 10.4 percentage points in APs. Compared with YOLOv5x and Faster R-CNN, DCYOLO shows higher accuracy and better detection performance. The experiment result proves that the DCYOLO algorithm can adapt to the dense object detection requirements in the congested environment of urban streets.

13.
Polymers (Basel) ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611176

RESUMO

Within the realm of dental material innovation, this study pioneers the incorporation of tung oil into polyurea coatings, setting a new precedent for enhancing self-healing functionality and durability. Originating from an ancient practice, tung oil is distinguished by its outstanding water resistance and microbial barrier efficacy. By synergizing it with polyurea, we developed coatings that unite mechanical strength with biological compatibility. The study notably quantifies self-healing efficiency, highlighting the coatings' exceptional capacity to mend physical damages and thwart microbial incursions. Findings confirm that tung oil markedly enhances the self-repair capabilities of polyurea, leading to improved wear resistance and the inhibition of microbial growth, particularly against Streptococcus mutans, a principal dental caries pathogen. These advancements not only signify a leap forward in dental material science but also suggest a potential redefinition of dental restorative practices aimed at prolonging the lifespan of restorations and optimizing patient outcomes. Although this study lays a substantial foundation for the utilization of natural oils in the development of medical-grade materials, it also identifies the critical need for comprehensive cytotoxicity assays. Such evaluations are essential to thoroughly assess the biocompatibility and the safety profile of these innovative materials for clinical application. Future research will concentrate on this aspect, ensuring that the safety and efficacy of the materials align with clinical expectations for dental restorations.

14.
Int J Biol Macromol ; 269(Pt 2): 131959, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692548

RESUMO

Polyphenol-protein complexes delivery systems are gaining attention for their potential health benefits and food industry development. However, creating an ideal delivery system requires extensive wet-lab experimentation. To address this, we collected 525 ligand-protein interaction data pairs and established an interaction prediction model using Bilinear Attention Networks. We utilized 10-fold cross validation to address potential overfitting issues in the model, resulting in showed higher average AUROC (0.8443), AUPRC (0.7872), and F1 (0.8164). The optimal threshold (0.3739) was selected for the model to be used for subsequent analysis. Based on the model prediction results and optimal threshold, by verifying experimental analysis, the interaction of paeonol with the following proteins was obtained, including bovine serum albumin (lgKa = 6.2759), bovine ß-lactoglobulin (lgKa = 6.7479), egg ovalbumin (lgKa = 5.1806), zein (lgKa = 6.0122), bovine α-lactalbumin (lgKa = 3.9170), bovine lactoferrin (lgKa = 4.5380), the first four proteins are consistent with the predicted results of the model, with lgKa >5. The established model can accurately and rapidly predict the interaction of polyphenol-protein complexes. This study is the first to combine open ligand-protein interaction experiments with Deep Learning algorithms in the food industry, greatly improving research efficiency and providing a novel perspective for future complex delivery system construction.


Assuntos
Polifenóis , Polifenóis/química , Animais , Ligação Proteica , Bovinos , Proteínas/química , Sistemas de Liberação de Medicamentos/métodos , Lactoglobulinas/química , Ligantes , Soroalbumina Bovina/química
15.
Adv Mater ; : e2401667, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843541

RESUMO

The efficacy of adoptive T cell therapy (ACT) for the treatment of solid tumors remains challenging. In addition to the poor infiltration of effector T (Teff) cells limited by the physical barrier surrounding the solid tumor, another major obstacle is the extensive infiltration of regulatory T (Treg) cells, a major immunosuppressive immune cell subset, in the tumor microenvironment. Here, this work develops a grooved microneedle patch for augmenting ACT, aiming to simultaneously overcome physical and immunosuppressive barriers. The microneedles are engineered through an ice-templated method to generate the grooved structure for sufficient T-cell loading. In addition, with the surface modification of chemokine CCL22, the MNs could not only directly deliver tumor-specific T cells into solid tumors through physical penetration, but also specifically divert Treg cells from the tumor microenvironment to the surface of the microneedles via a cytokine concentration gradient, leading to an increase in the ratio of Teff cells/Treg cells in a mouse melanoma model. Consequently, this local delivery strategy of both T cell receptor T cells and chimeric antigen receptor T cells via the CCL22-modified grooved microneedles as a local niche could significantly enhance the antitumor efficacy and reduce the on-target off-tumor toxicity of ACT.

16.
Food Chem X ; 22: 101259, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38444556

RESUMO

This research sought to examine how the physicochemical characteristics of soy globulins and different processing techniques influence the gel properties of soy yogurt. The goal was to improve these gel properties and rectify any texture issues in soy yogurt, ultimately aiming to produce premium-quality plant-based soy yogurt. In this research study, the investigation focused on examining the impact of 7S/11S, homogenization pressure, and glycation modified with glucose on the gel properties of soy yogurt. A plant-based soy yogurt with superior gel and texture properties was successfully developed using a 7S/11S globulin-glucose conjugate at a 1:3 ratio and a homogenization pressure of 110 MPa. Compared to soy yogurt supplemented with pectin or gelatin, this yogurt demonstrated enhanced characteristics. These findings provide valuable insights into advancing plant protein gels and serve as a reference for cultivating new soybean varieties by soybean breeding experts.

17.
Environ Sci Pollut Res Int ; 30(47): 104697-104712, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37707736

RESUMO

This study employs panel data from 1990 to 2020 for the G-7 countries (Canada, France, Germany, Italy, Japan, the UK, and the USA) and employs the examination of heterogeneous slope coefficients and cross-sectional dependence tests as preliminary steps before conducting cointegration analysis and second-generation unit-root tests. This study employs the method of movement quantile regression (MMQR) to analyze long-run and short-run relationships. The findings from the MMQR model indicate that economic growth and imports have a negative impact on consumption-based CO2 (CCO2) emissions, which worsens at higher quantiles. On the other hand, exports, energy efficiency, and renewable energy output (REO) have a positive effect on mitigating CCO2 emissions, with this effect becoming more pronounced at higher quantiles. Furthermore, the robustness of the results was confirmed through rigorous checks using quantile regression with optimized Markov Chain Monte Carlo techniques, which is a reliable non-parametric approach. These checks consistently demonstrated a significant impact on CCO2 emissions, thus validating the findings obtained from MMQR. Based on the outcomes, this study recommends that each G-7 nations should make efforts to regulate their CCO2 emissions by adopting measures that foster ecological equilibrium. Moreover, fostering export-driven sectors, exploring innovative strategies for REO, and improving energy efficiency are crucial measures for effectively tackling CCO2 emissions within the G-7 countries. The study highlights that renewable energy output (REO) and energy efficiency effectively mitigate CCO2 emissions at higher quantiles, suggesting the importance of policy measures supporting their development. Additionally, policies targeting import reduction, export promotion, and carbon pricing mechanisms emerge as strategies to curb emissions and foster sustainable development.


Assuntos
Dióxido de Carbono , Carbono , Estudos Transversais , Desenvolvimento Econômico , Análise de Regressão , Energia Renovável
18.
Heliyon ; 9(7): e18224, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539255

RESUMO

Background: Folic acid and zinc supplements have been used to treat male infertility, but their efficacy is still debated. Objective: To systematically evaluate the effects of folic acid and folic acid plus zinc supplements on sperm characteristics and pregnancy outcomes of infertile men. Methods: An online systematic search was performed using PubMed, Cochrane Library, and EMBASE databases from inception to August 1, 2022. The goal was to identify randomized controlled trials (RCTs) that used folic acid or folic acid plus zinc to improve sperm characteristics of infertile men. Data were extracted by two investigators who independently screened the literature and assessed for quality according to the criteria. The meta-analysis was performed using RevMan 5.4 software. Results: A total of 8 RCT studies involving 2168 patients were included. The results showed that compared with the controls, folic acid significantly increased sperm motility (MD, 3.63; 95% CI, -1.22 to 6.05; P = 0.003), but did not affect the sperm concentration (MD, 2.53; 95% CI, -1.68 to 6.73; P = 0.24) and sperm morphology (MD, -0.02; 95% CI, -0.29 to 0.24; P = 0.86) in infertile men. Folic acid plus zinc did not affect sperm concentration (MD, 1.87; 95% CI, -1.39 to 5.13; P = 0.26), motility (MD, 1.67; 95% CI, -1.29 to 4.63; P = 0.27), and morphology (MD, -0.05; 95% CI, -0.27 to 0.18; P = 0.69) in infertile men. Secondary results showed that compared with a placebo, folic acid alone had a higher rate of pregnancy in transferred embryos (35.6% vs. 20.4%, P = 0.082), but the difference was not significant. Folic acid plus zinc did not affect pregnancy outcomes. Conclusions: Based on the meta-analysis, no significant improvements in sperm characteristics with folic acid plus zinc supplements were seen. However, folic acid alone has demonstrated the potential to improve sperm motility and in vitro fertilization-intracytoplasmic sperm injection (IVF-ICSI) outcomes. This indicates that folic acid supplements alone may be a viable treatment option for male infertility.

19.
Int J Biol Macromol ; 241: 124476, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37076059

RESUMO

Radiotherapies are commonly used to target remaining tumor niches after surgery of solid tumors but are restricted due to therapeutic resistance. Several pathways of radioresistance have been reported in various cancers. This study investigates the pivotal role of Nuclear factor-erythroid 2-related factor 2 (NRF2) in the activation of DNA damage repair in lung cancer cells after x-rays exposure. To explore the NRF2 activation after ionizing irradiations, this study uses a knockdown of NRF2, which shows potential DNA damage after x-rays irradiation in lung cancers. This work further shows that NRF2 knockdown disrupts damaged DNA repair by inhibiting DNA-dependent protein kinase catalytic subunit. At the same time, NRF2 knockdown by shRNA considerably disparate homologous recombination by interfering with Rad51 expression. Further investigation of the associated pathway reveals that NRF2 activation mediates DNA damage response via the mitogen-activated protein kinase (MAPK) pathway as the knockout of NRF2 directly enhances intracellular MAPK phosphorylation. Similarly, both N-acetylcysteineand constitutive knockout of NRF2 disrupt DNA-dependent protein kinase catalytic subunit, while NRF2 knockout failed to upregulate Rad51 expression after irradiation in-vivo. Taken together, these findings advocate NRF2 plays a critical role in the development of radioresistance by upregulating DNA damage response via the MAPK pathway, which can be of great significance.


Assuntos
Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Reparo do DNA , Radiação Ionizante , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Tolerância a Radiação/genética
20.
Front Plant Sci ; 14: 1286699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023907

RESUMO

A previous metabolomic and genome-wide association analysis of maize screened a glucose-6-phosphate 1-epimerase (ZmG6PE) gene, which responds to low-phosphorus (LP) stress and regulates yield in maize's recombinant inbred lines (RILs). However, the relationship of ZmG6PE with phosphorus and yield remained elusive. This study aimed to elucidate the underlying response mechanism of the ZmG6PE gene to LP stress and its consequential impact on maize yield. The analysis indicated that ZmG6PE required the Aldose_epim conserved domain to maintain enzyme activity and localized in the nucleus and cell membrane. The zmg6pe mutants showed decreased biomass and sugar contents but had increased starch content in leaves under LP stress conditions. Combined transcriptome and metabolome analysis showed that LP stress activated plant immune regulation in response to the LP stress through carbon metabolism, amino acid metabolism, and fatty acid metabolism. Notably, LP stress significantly reduced the synthesis of glucose-1-phosphate, mannose-6-phosphate, and ß-alanine-related metabolites and changed the expression of related genes. ZmG6PE regulates LP stress by mediating the expression of ZmSPX6 and ZmPHT1.13. Overall, this study revealed that ZmG6PE affected the number of grains per ear, ear thickness, and ear weight under LP stress, indicating that ZmG6PE participates in the phosphate signaling pathway and affects maize yield-related traits through balancing carbohydrates homeostasis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa