Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(1): 63-74, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38112512

RESUMO

The detrimental effects of bisphenol (BP) exposure are a concern for vulnerable species, Indo-Pacific humpback dolphins (Sousa chinensis). To investigate the characteristics of BP profiles and their adverse impact on humpback dolphins, we assessed the concentrations of six BPs, including bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), bisphenol B (BPB), and bisphenol P (BPP) in blubber (n = 26) and kidney (n = 12) of humpback dolphins stranded in the Pearl River Estuary, China. BPS accounted for the largest proportion of the total bisphenols (∑BPs) in blubber (55%) and kidney (69%). The concentration of ∑BP in blubber was significantly higher than that in the kidney and liver. The EC50 values of five BPA alternatives were lower than those of BPA in humpback dolphin skin fibroblasts (ScSF) and human skin fibroblasts (HSF). ScSF was more sensitive to BPS, BPAF, BPB, and BPP than HSF. The enrichment pathway of BPA was found to be associated with inflammation and immune dysregulation, while BPP and BPS demonstrated a preference for genotoxicity. BPA, BPP, and BPS, which had risk quotients (RQs) > 1, were found to contribute to subhealth and chronic disease in humpback dolphins. According to the EC50-based risk assessment, BPS poses a higher health risk than BPA for humpback dolphins. This study successfully evaluated the risks of bisphenols in rare and endangered cetacean cell lines using a noninvasive method. More in vivo and in field observations are necessary to know whether the BPA alternatives are likely to be regrettable substitutions.


Assuntos
Golfinhos , Poluentes Químicos da Água , Animais , Humanos , Golfinhos/metabolismo , Poluentes Químicos da Água/toxicidade , China , Compostos Benzidrílicos/toxicidade
2.
Environ Sci Technol ; 58(21): 9102-9112, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38752859

RESUMO

Cetaceans play a pivotal role in maintaining the ecological equilibrium of ocean ecosystems. However, their populations are under global threat from environmental contaminants. Various high levels of endocrine-disrupting chemicals (EDCs) have been detected in cetaceans from the South China Sea, such as the Indo-Pacific humpback dolphins in the Pearl River Estuary (PRE), suggesting potential health risks, while the impacts of endocrine disruptors on the dolphin population remain unclear. This study aims to synthesize the population dynamics of the humpback dolphins in the PRE and their profiles of EDC contaminants from 2005 to 2019, investigating the potential role of EDCs in the population dynamics of humpback dolphins. Our comprehensive analysis indicates a sustained decline in the PRE humpback dolphin population, posing a significant risk of extinction. Variations in sex hormones induced by EDC exposure could potentially impact birth rates, further contributing to the population decline. Anthropogenic activities consistently emerge as the most significant stressor, ranking highest in importance. Conventional EDCs demonstrate more pronounced impacts on the population compared to emerging compounds. Among the conventional pollutants, DDTs take precedence, followed by zinc and chromium. The most impactful emerging EDCs are identified as alkylphenols. Notably, as the profile of EDCs changes, the significance of conventional pollutants may give way to emerging EDCs, presenting a continued challenge to the viability of the humpback dolphin population.


Assuntos
Golfinhos , Disruptores Endócrinos , Dinâmica Populacional , Animais , Disruptores Endócrinos/toxicidade , Poluentes Químicos da Água/toxicidade , Monitoramento Ambiental
3.
Mar Pollut Bull ; 203: 116507, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788277

RESUMO

The use of healthcare products containing triclosan has surged globally due to the COVID-19 pandemic. In this study, we used a global spatially explicit model to simulate triclosan export by rivers to coastal seas in the post-COVID-19 era. The global triclosan model shows that the primary watersheds of triclosan export in Europe, Africa, Southeast Asia, United States, Brazil, India, and China, with river mouths presenting higher ecological risk distributed in Europe, South Asia, and America. It is estimated that triclosan concentrations in more than 77 % of global watersheds will be below the toxicity threshold by 2030 if the per capita use of triclosan is halved. Rather than completely restricting the use of triclosan, we should focus on integrating the effectiveness data of triclosan to develop recommendations for essential usage, substitutes, and wastewater treatment plants that minimize triclosan pollution in the post-COVID-19 era.


Assuntos
COVID-19 , Rios , Triclosan , Poluentes Químicos da Água , Triclosan/análise , Rios/química , Poluentes Químicos da Água/análise , Humanos , Higiene , Oceanos e Mares , Monitoramento Ambiental , SARS-CoV-2
4.
Integr Zool ; 18(1): 183-198, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35279952

RESUMO

Accurate diet identification of top predators is crucial to fully understand their ecological roles. Compared to terrestrial animals, gathering dietary information from cetaceans is notoriously difficult. Here, we applied a multilocus metabarcoding approach to investigate the diet of vulnerable Indo-Pacific humpback dolphins and Indo-Pacific finless porpoises from the Pearl River Estuary (PRE), China. Our analyses identified 21 prey fish species from the 42 humpback dolphin stomachs, as well as 10 species of fish and 1 species of cephalopod from the 13 finless porpoise stomachs. All of the taxa were assigned to the species level, highlighting that the multimarker approach could facilitate species identification. Most of the prey species were small- and medium-sized fishes that primarily fed on zooplankton. The calculated similarity index revealed a moderated dietary overlap between the 2 cetaceans, presumably due to the feeding of the 2 predators in association with fishing vessels in the PRE. A more diverse diet was observed in humpback dolphins in the closed fishing season compared to the fishing season, implying the influence on the dolphin diet due to the availability of commercial fishery resources. However, according to the results of species rarefaction curves, our findings on the feeding habits of the 2 cetaceans are still limited by insufficient sample size and therefore should be interpreted with caution. This study represents a first attempt to apply the multilocus DNA metabarcoding technique in the diet analysis of small cetaceans, although more efforts are needed to improve this type of analysis.


Assuntos
Golfinhos , Toninhas , Poluentes Químicos da Água , Animais , Golfinhos/genética , Toninhas/genética , Rios , Estuários , Código de Barras de DNA Taxonômico , Poluentes Químicos da Água/análise , China , Dieta/veterinária
5.
Environ Pollut ; 307: 119526, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623568

RESUMO

With the dramatic increase in anthropogenic threats to the Pearl River Estuary (PRE), the population size of the Indo-Pacific humpback dolphins (Sousa chinensis) has significantly decreased over the past decade. To understand the impact and potential risks of intense human activities on these dolphins, factors related to the mortality of humpback dolphins in the PRE were investigated by a detailed examination of 343 dolphin specimens stranded during 2003-2017. There was a significant (p < 0.01) increasing trend for humpback dolphin stranding, reflecting the accelerating rate of the population decline. A large proportion of strandings (35.88%) were neonates. A low recruitment rate implies slow population growth, and hence, limited capacity to resist anthropogenic stress. The most commonly diagnosed causes of death were vessel collision and net entanglement. The concentrations of trace metals, polychlorinated biphenyl (PCB) congeners, dichlorodiphenyltrichloroethane, polycyclic aromatic hydrocarbons, and most of per- and polyfluoroalkyl substances (PFASs) in the dolphin samples were greater than those previously reported in cetaceans globally. Furthermore, Cu, PCB77, PCB169, PCB81, PCB37, and PFASs (excluding PFBA, PFPeA, PFHxA, PFHxDA, and PFODA) were the major pollutants accumulated in neonates. 67% of PCB, 78% of Cu, and 100% of perfluorooctane sulfonate concentrations in the neonates exceeded the threshold for toxicological effects in marine mammals, suggesting that these compounds could be important factors contributing to the low survival rate of calves in this area. This study revealed that vessel transportation, fishing activities, and pollutant bioaccumulation are the three major causes of humpback dolphin mortality in the PRE. These results highlight the need for more efforts to restrict anthropogenic activities, especially vessel traffic, the catching of these marine animals and fishing, and pollutant discharge, in order to prevent vulnerable species from continuous population decline and further extinction.


Assuntos
Golfinhos , Poluentes Ambientais , Fluorocarbonos , Animais , China , Estuários , Rios
6.
Environ Pollut ; 270: 116057, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221089

RESUMO

Microplastic pollution is a growing concern worldwide. Despite numerous studies showing the occurrence of microplastics in low-trophic level aquatic organisms, microplastic ingestion and contamination in cetaceans, especially those from Asian waters, has been rarely recorded. Here, we investigated stomach microplastic pollution in twelve Indo-Pacific humpback dolphins stranded along the Pearl River Estuary (PRE), China. We also compared microplastic abundances in dolphins stranded near populated urban areas (ZH, n = 6) with those stranded near rural areas (JM, n = 6). Microplastics were detected in all samples, with abundance ranging widely from 11 to 145 items individual-1 (mean ± SD, 53 ± 35.2). Major microplastics were polypropylene and polyethylene fibers, with the size mostly ranging from 1 to 5 mm and the dominant colors of white or transparent. Humpback dolphins from ZH (73 ± 36.8 items individual-1) exhibited a significantly higher average microplastic abundance than those from JM (33 ± 18.3 items individual-1, p < 0.05). In particular, the highest microplastic concentration was identified in the dolphin (SC-ZH01) stranded near the mouth of the Pearl River, whereas the dolphin (SC-JM04) collected at the rural site contained the lowest concentration of microplastics, suggesting the important influence of land-based human activities on the accumulation of microplastics in the PRE. The identification of varied microplastic polymers indicated their complex source scenarios. This study suggests that, as one of top predators in the potential microplastic food chains, this cetacean species could likely serve as an endpoint biomonitoring species of microplastic pollution in the PRE or other similar estuarine ecosystems. Our results highlight the need for more studies towards better understanding the potential impacts of microplastics on this endangered species.


Assuntos
Golfinhos , Poluentes Químicos da Água , Animais , China , Ecossistema , Monitoramento Ambiental , Estuários , Humanos , Microplásticos , Plásticos , Rios , Poluentes Químicos da Água/análise
7.
Environ Pollut ; 286: 117544, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119862

RESUMO

While polychlorinated biphenyl (PCB)-related risks have been reported at the cellular, organ, and individual levels in some marine mammals, studies quantifying the PCB-associated population-level effects are limited. Here, we combined chemical analysis and individual-based model simulation to investigate the impact of PCBs on the Indo-Pacific humpback dolphin (sub)population from the Pearl River Estuary (PRE). An annual PCB accumulation rate of 0.29 ± 0.07 mg/kg lipid per year was estimated based on the measured age-specific male data as males continue to accumulate PCBs throughout their lifetime, without depurating contaminant loads. Using the Taiwan Strait dolphin population with low PCBs as a baseline, we compare our model simulations in PRE population to estimate relative population impacts of PCBs and other stressors. When using the current vital rates of the PRE dolphins which have been affected by PCBs and other stressors (e.g., underwater noise, prey limitation, etc.), our simulations revealed a substantial decline (8.1%) in the annual population growth rate (λ) of PRE metapopulation compared to baseline over the next 100 years. At the estimated PCB accumulation rate, the PCB-mediated effects on calf survival and immunity would cause a slight decline (0.9%) in λ relative to baseline. Our findings suggest a relatively limited impact of PCBs on the long-term survival of PRE dolphins among all stressors. However, it should be noted that even under model simulations where dietary PCBs were eliminated, humpback dolphins would still need a long time to reduce their PCB burdens to a relatively "safe" level through biological cycling. Considering that the baseline vital rates might also have been affected by PCBs and other stressors, our results are considered relative rather than absolute. This study provides a starting point for quantifying population-level consequences of contaminant exposure on humpback dolphins, although more efforts are needed to perfect this type of analysis.


Assuntos
Golfinhos , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Ecossistema , Estuários , Masculino , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa