Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Nano Lett ; 24(26): 8080-8088, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888232

RESUMO

Among various mRNA carrier systems, lipid nanoparticles (LNPs) stand out as the most clinically advanced. While current clinical trials of mRNA/LNP therapeutics mainly address liver diseases, the potential of mRNA therapy extends far beyond─yet to be unraveled. To fully unlock the promises of mRNA therapy, there is an urgent need to develop safe and effective LNP systems that can target extrahepatic organs. Here, we report on the development of sulfonium lipid nanoparticles (sLNPs) for systemic mRNA delivery to the lungs. sLNP effectively and specifically delivered mRNA to the lungs following intravenous administration in mice. No evidence of lung and systemic inflammation or toxicity in major organs was induced by sLNP. Our findings demonstrated that the newly developed lung-specific sLNP platform is both safe and efficacious. It holds great promise for advancing the development of new mRNA-based therapies for the treatment of lung-associated diseases and conditions.


Assuntos
Lipídeos , Pulmão , Nanopartículas , RNA Mensageiro , Animais , Pulmão/metabolismo , Nanopartículas/química , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/administração & dosagem , Lipídeos/química , Humanos , Compostos de Sulfônio/química , Técnicas de Transferência de Genes , Lipossomos
2.
Mol Pharm ; 20(4): 2138-2149, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36877183

RESUMO

Systemic fungal infections are an increasingly prevalent health problem. Amphotericin B (AmB), a hydrophobic polyene antibiotic, remains the drug of choice for life-threatening invasive fungal infections. However, it has dose-limiting side effects, including nephrotoxicity. The efficacy and toxicity of AmB are directly related to its aggregation state. Here, we report the preparation of a series of telodendrimer (TD) nanocarriers with the freely engineered core structures for AmB encapsulation to fine-tune AmB aggregation status. The reduced aggregation status correlates well with the optimized antifungal activity, attenuated hemolytic properties, and reduced cytotoxicity to mammalian cells. The optimized TD nanocarrier for monomeric AmB encapsulation significantly increases the therapeutic index, reduces the in vivo toxicity, and enhances antifungal effects in mouse models with Candida albicans infection in comparison to two common clinical formulations, i.e., Fungizone and AmBisome.


Assuntos
Anfotericina B , Micoses , Camundongos , Animais , Anfotericina B/química , Antifúngicos/química , Composição de Medicamentos , Candida albicans , Mamíferos
3.
Macromol Rapid Commun ; 44(23): e2300322, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37533180

RESUMO

Imbalanced immune regulation leads to the abnormal wound healing process, e.g., chronic unhealing wound or hypertrophic scar formation. Thus, the attenuation of the overflowing inflammatory factors is a viable approach to maintain the homeostatic immune regulation to facilitate normal wound healing. A versatile telodendrimer (TD) nanotrap (NT) platform is developed for efficient biomolecular protein binding. The conjugation of TD NT in size-exclusive biocompatible hydrogel resin allows for topical application for cytokine scavenging. Fine-tuning the TD NT density/valency in hydrogel resin controls resin swelling, optimizes molecular diffusion, and improves cytokine capture for effective immune modulation. The hydrogel with reduced TD NT density allows for higher protein/cytokine adsorption capacity with faster kinetics, due to the reduced barrier of TD NT nano-assembly. The positively charged TD NT hydrogel exhibits superior removal of negatively charged proinflammatory cytokines from the lipopolysaccharide (LPS, a potent endotoxin) primed immune cell culture medium. The negatively charged TD NT hydrogel removes positively charged anti-inflammatory cytokines efficiently from cell culture medium. TD NT hydrogel effectively constrains the local inflammation induced by subcutaneous LPS injection in mice. These results indicate the great potential applications of the engineered TD NT hydrogel as topical immune modulatory treatments to attenuate local inflammation.


Assuntos
Hidrogéis , Lipopolissacarídeos , Animais , Camundongos , Hidrogéis/química , Lipopolissacarídeos/farmacologia , Cicatrização , Citocinas/farmacologia , Inflamação , Antibacterianos/farmacologia
4.
Mol Pharm ; 18(6): 2349-2359, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33983742

RESUMO

Serum protein adsorption on the nanoparticle surface determines the biological identity of polymeric nanocarriers and critically impacts the in vivo stability following intravenous injection. Ultrahydrophilic surfaces are desired in delivery systems to reduce the serum protein corona formation, prolong drug pharmacokinetics, and improve the in vivo performance of nanotherapeutics. Zwitterionic polymers have been explored as alternative stealth materials for biomedical applications. In this study, we employed facial solid-phase peptide chemistry (SPPC) to synthesize multifunctional zwitterionic amphiphiles for application as a drug delivery vehicle. SPPC facilitates synthesis and purification of the well-defined dendritic amphiphiles, yielding high-purity and precise architecture. Zwitterionic glycerylphosphorylcholine (GPC) was selected as a surface moiety for the construction of a ultrahydrophilic dendron, which was coupled on solid phase to a hydrophobic dendron using multiple rhein (Rh) molecules as drug-binding moieties (DBMs) for doxorubicin (DOX) loading via pi-pi stacking and hydrogen bonding. The resulting zwitterionic amphiphilic Janus dendrimer (denoted as GPC8-Rh4) showed improved stabilities and sustained drug release compared to the analogue with poly(ethylene glycol) (PEG) surface (PEG5k-Rh4). In vivo studies in xenograft mouse tumor models demonstrated that the DOX-GPC8-Rh4 nanoformulation significantly improved anticancer effects compared to DOX-PEG5k-Rh4, owing to the improved in vivo pharmacokinetics and increased tumor accumulation.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Fármacos por Nanopartículas/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Dendrímeros/síntese química , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Glicerilfosforilcolina/química , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biomacromolecules ; 21(6): 2132-2146, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32233461

RESUMO

This study describes a unique "quasi-living" block copolymerization method based on an initiation by a single enzyme. We use this term to describe a process where a preformed polymer chain can be reactivated to continue propagating with a second or third comonomer without addition of new catalyst. The presented strategy involves a laccase (oxidoreductase) mediated initial polymerization of 4-hydroxyphenylacetic acid to a homopolymer containing phenolic terminal units, which in turn can be easily reactivated by the same enzyme in the same reaction vessel to continue propagation with a second monomer (tyramine). Increased copolymer yield (up to 26.0%) and polymer molecular mass (up to Mw = 116 000 Da) are achieved through the addition of previously developed micellar and hydrogel enzyme complexing agents. The produced poly(tyramine)-b-poly(4-hydroxyphenylacetic acid)-b-poly(tyramine) is water-soluble and able to self-assemble in aqueous solution. Both tyramine blocks were successfully modified with ibuprofen moieties (up to 24.6% w/w load) as an example for potential polymer drug conjugation. The copolymerization could be further extended with addition of a third (fluorescent) comonomer in the same reaction vessel to yield a fluorescent pentablock copolymer. The successful modifications and advantageous solution behavior of the produced copolymers demonstrate their viability as versatile drug delivery and/or bioimaging agents, as confirmed by cytotoxicity and cellular uptake studies.


Assuntos
Micelas , Polímeros , Sistemas de Liberação de Medicamentos , Hidrogéis , Polimerização
6.
Exp Parasitol ; 204: 107722, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31279928

RESUMO

In the present study, we attempted to identify antigens with high sensitivity and specificity for the serological diagnosis of human toxoplasmosis. We investigated soluble proteins from the tachyzoites of the RH strain of Toxoplasma gondii (T. gondii) and excreted/secreted antigens (ESAs) from the peritoneal protein of T. gondii-infected mice. One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis revealed that in both soluble tachyzoite antigens and ESAs, the antigens located between 25 and 35 kDa had high diagnostic sensitivity. Further analysis of antigenic specificity revealed that the antigens located between 25 and 35 kDa were specifically recognized by the sera of toxoplasmosis patients, but other parasitic diseases were not. The protein spots between 25 and 35 kDa were selected after two-dimensional electrophoresis of both soluble tachyzoite antigens and ESAs. GRA2, GRA7, and triosephosphate isomerase (TPI) were successfully characterized from the protein spots using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectroscopy analysis. We expressed, purified, and evaluated proteins GRA2, GRA7, and TPI. TPI is a novel antigen with potential for the serological diagnosis of toxoplasmosis, and composite recombinant proteins (TPI, GRA2, and GRA7) have great sera diagnostic value for the detection of the disorder.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Imunoglobulina G/sangue , Toxoplasma/imunologia , Toxoplasmose/diagnóstico , Animais , Western Blotting , DNA Complementar/biossíntese , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Focalização Isoelétrica , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos ICR , Reação em Cadeia da Polimerase , Proteínas de Protozoários/imunologia , RNA de Protozoário/genética , RNA de Protozoário/isolamento & purificação , Sensibilidade e Especificidade , Toxoplasmose/sangue , Toxoplasmose/imunologia , Triose-Fosfato Isomerase/imunologia , Eletroforese em Gel Diferencial Bidimensional
7.
Biomacromolecules ; 19(2): 626-632, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29341595

RESUMO

Poly(vinyl alcohol) (PVA) is a cytocompatible synthetic polymer and has been commonly used to prepare hydrogels. Bile acids and ß-cyclodextrin are both natural compounds and they form stable host-guest inclusion complexes. They are attached covalently onto a low molecular weight PVA separately. Self-healing hydrogels can be easily formed by mixing the aqueous solutions of these PVA based polymers. The mechanical properties of the hydrogels can be tuned by varying the molar fractions of bile acid units on PVA. The dynamic inclusion complexation of the host-guest pair of the hydrogel allows the self-healing rapidly under ambient atmosphere and their mechanical properties could recover their original values in 1 min after incision. These PVA based polymers exhibited the good cytocompatibility and high hemocompatibility as shown by their biological evaluations. The use of natural compounds for host-guest interaction make such gels especially convenient to use as biomaterials, an advantage over conventional hydrogels prepared through freeze-thaw method.


Assuntos
Fibroblastos/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato , Teste de Materiais , Álcool de Polivinil , beta-Ciclodextrinas , Animais , Fibroblastos/citologia , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Camundongos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
8.
Small ; 12(31): 4185-92, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27375237

RESUMO

A strategy to precisely engineer lipidoid-telodendrimer binary hybrid nanoparticles that offer enhanced cell membrane permeability for therapeutic proteins to reach the intracellular targets is established. The highly controllable biochemical and physical properties of the nanoparticles make them promising for protein-based brain cancer treatment with the assistance of convection-enhanced delivery.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Lipídeos/química , Nanopartículas/química , Proteínas/administração & dosagem , Proteínas/química , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Humanos , Modelos Teóricos , Proteínas/uso terapêutico
9.
Mol Pharm ; 12(4): 1216-29, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25692376

RESUMO

Certain natural products such as gambogic acid (GA) exhibit potent antitumor effects. Unfortunately, administration of these natural products is limited by their poor solubility in conventional pharmaceutical solvents. In this study, a series of telodendrimers, composed of linear polyethylene glycol (PEG)-blocking-dendritic oligomer of cholic acid (CA) and vitamin E (VE), have been designed with architectures optimized for efficient delivery of GA and other natural anticancer compounds. Two of the telodendrimers with segregated CA and VE domains self-assembled into stable cylindrical and/or spherical nanoparticles (NPs) after being loaded with GA as observed under transmission electron microscopy (TEM), which correlated with the dynamic light scattering (DLS) analysis of sub-30 nm particle sizes. A very high GA loading capacity (3:10 drug/polymer w/w) and sustained drug release were achieved with the optimized telodendrimers. These novel nanoformulations of GA were found to exhibit similar in vitro cytotoxic activity against colon cancer cells as the free drug. Near-infrared fluorescence small animal imaging revealed preferential accumulation of GA-loaded NPs into tumor tissue. The optimized nanoformulation of GA achieved superior antitumor efficacy compared to GA-Cremophor EL formulation at equivalent doses in HT-29 human colon cancer xenograft mouse models. Given the mild adverse effects associated with this natural compound and the enhanced anticancer effects via tumor targeted telodendrimer delivery, the optimized GA nanoformulation is a promising alternative to the traditional chemotherapy in colon cancer treatment.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Dendrímeros/química , Vitamina E/química , Xantonas/administração & dosagem , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Feminino , Células HCT116 , Hemólise , Humanos , Luz , Células MCF-7 , Camundongos , Camundongos Nus , Micelas , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Transplante de Neoplasias , Polietilenoglicóis/química , Espalhamento de Radiação , Solubilidade
10.
Langmuir ; 31(14): 4270-80, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25532019

RESUMO

Delivery of poorly soluble anticancer drugs can be achieved by employing polymeric drug delivery systems, capable of forming stable self-assembled nanocarriers with drug encapsulated within their hydrophobic cores. Computational investigations can aid the design of efficient drug-delivery platforms; however, simulations of nanocarrier self-assembly process are challenging due to high computational cost associated with the large system sizes (millions of atoms) and long time scales required for equilibration. In this work, we overcome this challenge by employing a multiscale computational approach in conjunction with experiments to analyze the role of the individual building blocks in the self-assembly of a highly tunable linear poly(ethylene glycol)-b-dendritic oligo(cholic acid) block copolymer called telodendrimer. The multiscale approach involved developing a coarse grained description of the telodendrimer, performing simulations over several microseconds to capture the self-assembly process, followed by reverse mapping of the coarse grained system to atomistic representation for structural analysis. Overcoming the computational bottleneck allowed us to run multiple self-assembly simulations and determine average size, drug-telodendrimer micellar stoichiometry, optimal drug loading capacity, and atomistic details such hydrogen-bonding and solvent accessible area of the nanocarrier. Computed results are in agreement with the experimental data, highlighting the success of the multiscale approach applied here.


Assuntos
Antineoplásicos/química , Dendrímeros/química , Portadores de Fármacos/química , Ácido Cólico/química , Micelas , Modelos Moleculares , Conformação Molecular , Paclitaxel/química , Polietilenoglicóis/química
11.
Langmuir ; 30(23): 6878-88, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24849780

RESUMO

A series of telodendrimer (a linear polyethyelene glycol-block-dendritic oligo-cholic acid) have been synthesized via a bottom-up approach to optimize the hemocompatibility of the nanocarrier. Numbers of hydrophilic glycerol groups were introduced onto the polar surface of cholic acid to reduce the plasma membrane lytic activity of telodendrimers. An interesting result was observed: only an optimum number of glycerol introduced could reduce the hemolytic properties of the nanocarrier; on the contrary, more glycerols or the amino-glycerol substitution onto cholic acid significantly increased the hemolytic properties of the nanocarriers. To further elucidate the structure-property relationship, the molecular dynamic approach was used to simulate the conformation of the subunits of telodendrimers with different glycerol substitution, and the binding energies and the polar surface areas of the hairpin conformations were calculated to explain the membrane activities of nanocarriers. In addition, these telodendrimer subunits were synthesized and their membrane activities were tested directly, which validated the computational prediction and correlated with the observed hemolytic activity of nanocarriers. The glycerol substitution sustained the facial amphiphilicity of cholic acid, maintaining the superior drug loading capacity (paclitaxel and doxorubicin), stability, cell uptake, and anticancer efficacy of payloads. The in vivo optical imaging study indicated that the optimized nanocarriers can specifically deliver drug molecules to the tumor sites more efficiently than free drug administration, which is essential for the enhanced cancer treatment.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Polímeros/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Portadores de Fármacos/efeitos adversos , Sistemas de Liberação de Medicamentos/efeitos adversos , Feminino , Células HT29 , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Micelas , Simulação de Dinâmica Molecular , Paclitaxel/administração & dosagem , Paclitaxel/química , Paclitaxel/uso terapêutico , Polímeros/efeitos adversos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biomacromolecules ; 15(5): 1837-44, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24725005

RESUMO

A series of block and random copolymers consisting of oligo(ethylene glycol) and cholic acid pendant groups were synthesized via ring-opening metathesis polymerization of their norbornene derivatives. These block and random copolymers were designed to have similar molecular weights and comonomer ratios; both types of copolymers showed thermosensitivity in aqueous solutions with similar cloud points. The copolymers self-assembled into micelles in water as shown by dynamic light scattering and transmission electron microscopy. The hydrodynamic diameter of the micelles formed by the block copolymer is much larger and exhibited a broad and gradual shrinkage from 20 to 54 °C below its cloud point, while the micelles formed by the random copolymers are smaller in size but exhibited some swelling in the same temperature range. Based on in vitro drug release studies, 78% and 24% paclitaxel (PTX) were released in 24 h from micelles self-assembled by the block and random copolymers, respectively. PTX-loaded micelles formed by the block and random copolymers exhibited apparent antitumor efficacy toward the ovarian cancer cells with a particularly low half-maximal inhibitory concentration (IC50) of 27.4 and 40.2 ng/mL, respectively. Cholic acid-based micelles show promise as a versatile and potent platform for cancer chemotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Ácido Cólico/química , Portadores de Fármacos/química , Etilenoglicol/química , Paclitaxel/administração & dosagem , Polímeros/química , Temperatura , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Hidrodinâmica , Concentração Inibidora 50 , Micelas , Modelos Moleculares , Estrutura Molecular , Neoplasias Ovarianas/patologia , Paclitaxel/química , Paclitaxel/farmacologia , Tamanho da Partícula , Polímeros/administração & dosagem , Polímeros/síntese química , Propriedades de Superfície , Células Tumorais Cultivadas
13.
Acta Biomater ; 178: 147-159, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447811

RESUMO

Wound infection commonly causes delayed healing, especially in the setting of chronic wounds. Local release of antibiotics is considered a viable approach to treat chronic wounds. We have developed a versatile telodendrimer (TD) platform for efficient loading of charged antibiotic molecules via a combination of multivalent and synergistic charge and hydrophobic interactions. The conjugation of TD in biocompatible hydrogel allows for topical application to provide sustained antibiotic release. Notably, a drug loading capacity as high as 20 % of the drug-to-resin dry weight ratio can be achieved. The payload content (PC) and release profile of the various antibiotics can be optimized by fine-tuning TD density and valency in hydrogel based on the charge and hydrophobic features of the drug, e.g., polymyxin B (PMB), gentamycin (GM), and daptomycin (Dap), for effective infection control. We have shown that hydrogel with moderately reduced TD density demonstrates a more favorable release profile than hydrogel with higher TD density. Antibiotics loaded in TD hydrogel have comparable antimicrobial potency and reduced cytotoxicity compared to the free antibiotics due to a prolonged, controlled drug release profile. In a mouse model of skin and soft tissue infection, the subcutaneous administration of PMB-loaded TD hydrogel effectively eliminated the bacterial burden. Overall, these results suggest that engineerable TD hydrogels have great potential as a topical treatment to control infection for wound healing. STATEMENT OF SIGNIFICANCE: Wound infection causes a significant delay in the wound healing process, which results in a significant financial and resource burden to the healthcare system. PEGA-telodendrimer (TD) resin hydrogel is an innovative and versatile platform that can be fine-tuned to efficiently encapsulate different antibiotics by altering charged and hydrophobic structural moieties. Additionally, this platform is advantageous as the TD density in the resin can also be fine-tuned to provide the desired antibiotic payload release profile. Sustained antibiotics release through optimization of TD density provides a prolonged therapeutic window and reduces burst release-induced cytotoxicity compared to conventional antibiotics application. Studies in a preclinical mouse model of bacteria-induced skin and soft tissue infection demonstrated promising therapeutic efficacy as evidenced by effective infection control and prolonged antibacterial efficacy of antibiotics-loaded PEGA-TD resin. In conclusion, the PEGA-TD resin platform provides a highly customizable approach for effective antibiotics release with significant potential for topical application to treat various bacterial wound infections to promote wound healing.


Assuntos
Resinas Acrílicas , Polietilenoglicóis , Infecções dos Tecidos Moles , Infecção dos Ferimentos , Camundongos , Animais , Antibacterianos/uso terapêutico , Hidrogéis/química , Infecções dos Tecidos Moles/tratamento farmacológico , Infecção dos Ferimentos/tratamento farmacológico , Controle de Infecções
14.
J Control Release ; 370: 626-642, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734314

RESUMO

Severe nephrotoxicity and infusion-related side effects pose significant obstacles to the clinical application of Amphotericin B (AmB) in life-threatening systemic fungal infections. In pursuit of a cost-effective and safe formulation, we have introduced multiple phenylboronic acid (PBA) moieties onto a linear dendritic telodendrimer (TD) scaffold, enabling effective AmB conjugation via boronate chemistry through a rapid, high yield, catalysis-free and dialysis-free "Click" drug loading process. Optimized AmB-TD prodrugs self-assemble into monodispersed micelles characterized by small particle sizes and neutral surface charges. AmB prodrugs sustain drug release in circulation, which is accelerated in response to the acidic pH and Reactive Oxygen Species (ROS) in the infection and inflammation. Prodrugs mitigate the AmB aggregation status, reduce cytotoxicity and hemolytic activity compared to Fungizone®, and demonstrate superior antifungal activity to AmBisome®. AmB-PEG5kBA4 has a comparable maximum tolerated dose (MTD) to AmBisome®, while over 20-fold increase than Fungizone®. A single dose of AmB-PEG5kBA4 demonstrates superior efficacy to Fungizone® and AmBisome® in treating systemic fungal infections in both immunocompetent and immunocompromised mice.


Assuntos
Anfotericina B , Antifúngicos , Fungemia , Pró-Fármacos , Animais , Anfotericina B/administração & dosagem , Anfotericina B/farmacologia , Anfotericina B/química , Anfotericina B/farmacocinética , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/uso terapêutico , Humanos , Fungemia/tratamento farmacológico , Nanopartículas/química , Liberação Controlada de Fármacos , Micelas , Camundongos , Feminino , Química Click , Candida albicans/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/administração & dosagem
15.
Med Drug Discov ; 212024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38390434

RESUMO

Background: Glucocorticoids (GCs) are widely used in the treatment of inflammatory liver diseases and sepsis, but GC's various side effects on extrahepatic tissues limit their clinical benefits. Liver-targeting GC therapy may have multiple advantages over systemic GC therapy. The purpose of this study was to develop novel liver-targeting GC prodrugs as improved treatment for inflammatory liver diseases and sepsis. Methods: A hydrophilic linker or an ultra-hydrophilic zwitterionic linker carboxylic betaine (CB) was used to bridge cholic acid (CA) and dexamethasone (DEX) to generate transporter-dependent liver-targeting GC prodrugs CA-DEX and the highly hydrophilic CA-CB-DEX. The efficacy of liver-targeting DEX prodrugs and DEX were determined in primary human hepatocytes (PHH), macrophages, human whole blood, and/or mice with sepsis induced by cecal ligation and puncture. Results: CA-DEX was moderately water soluble, whereas CA-CB-DEX was highly water soluble. CA-CB-DEX and CA-DEX displayed highly transporter-dependent activities in reporter assays. Data mining found marked dysregulation of many GR-target genes important for lipid catabolism, cytoprotection, and inflammation in patients with severe alcoholic hepatitis. These key GR-target genes were similarly and rapidly (within 6 h) induced or down-regulated by CA-CB-DEX and DEX in PHH. CA-CB-DEX had much weaker inhibitory effects than DEX on endotoxin-induced cytokines in mouse macrophages and human whole blood. In contrast, CA-CB-DEX exerted more potent anti-inflammatory effects than DEX in livers of septic mice. Conclusions: CA-CB-DEX demonstrated good hepatocyte-selectivity in vitro and better anti-inflammatory effects in vivo. Further test of CA-CB-DEX as a novel liver-targeting GC prodrug for inflammatory liver diseases and sepsis is warranted.

16.
Cytokine Growth Factor Rev ; 77: 1-14, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38184374

RESUMO

Cytokines are small signaling proteins that regulate the immune responses to infection and tissue damage. Surface charges of cytokines determine their in vivo fate in immune regulation, e.g., half-life and distribution. The overall negative charges in the extracellular microenvironment and the acidosis during inflammation and infection may differentially impact cytokines with different surface charges for fine-tuned immune regulation via controlling tissue residential properties. However, the trend and role of cytokine surface charges has yet to be elucidated in the literature. Interestingly, we have observed that most pro-inflammatory cytokines have a negative charge, while most anti-inflammatory cytokines and chemokines have a positive charge. In this review, we extensively examined the surface charges of all cytokines and chemokines, summarized the pharmacokinetics and tissue adhesion of major cytokines, and analyzed the link of surface charge with cytokine biodistribution, activation, and function in immune regulation. Additionally, we identified that the general trend of charge disparity between pro- and anti-inflammatory cytokines represents a unique opportunity to develop precise immune modulation approaches, which can be applied to many inflammation-associated diseases including solid tumors, chronic wounds, infection, and sepsis.


Assuntos
Citocinas , Inflamação , Humanos , Citocinas/imunologia , Animais , Inflamação/imunologia , Quimiocinas/imunologia
17.
Nat Nanotechnol ; 19(6): 818-824, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38374413

RESUMO

Liposomes as drug vehicles have advantages, such as payload protection, tunable carrying capacity and improved biodistribution. However, due to the dysfunction of targeting moieties and payload loss during preparation, immunoliposomes have yet to be favoured in commercial manufacturing. Here we report a chemical modification-free biophysical approach for producing immunoliposomes in one step through the self-assembly of a chimeric nanobody (cNB) into liposome bilayers. cNB consists of a nanobody against human epidermal growth factor receptor 2 (HER2), a flexible peptide linker and a hydrophobic single transmembrane domain. We determined that 64% of therapeutic compounds can be encapsulated into 100-nm liposomes, and up to 2,500 cNBs can be anchored on liposomal membranes without steric hindrance under facile conditions. Subsequently, we demonstrate that drug-loaded immunoliposomes increase cytotoxicity on HER2-overexpressing cancer cell lines by 10- to 20-fold, inhibit the growth of xenograft tumours by 3.4-fold and improve survival by more than twofold.


Assuntos
Lipossomos , Receptor ErbB-2 , Anticorpos de Domínio Único , Lipossomos/química , Humanos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Receptor ErbB-2/imunologia , Animais , Linhagem Celular Tumoral , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Camundongos Nus
18.
Shock ; 59(6): 922-929, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36939682

RESUMO

ABSTRACT: Background: The kidney is the most common extrapulmonary organ injured in sepsis. The current study examines the ability of aerosolized nanochemically modified tetracycline 3 (nCMT-3), a pleiotropic anti-inflammatory agent, to attenuate acute kidney injury (AKI) caused by intratracheal LPS. Methods: C57BL/6 mice received aerosolized intratracheal nCMT-3 (1 mg/kg) or saline, followed by intratracheal LPS (2.5 mg/kg) to induce acute lung injury-induced AKI. Tissues were harvested at 24 h. The effects of nCMT-3 and LPS on AKI were assessed by plasma/tissue levels of serum urea nitrogen, creatinine, neutrophil gelatinase-associated lipocalin, kidney injury molecule 1, and renal histology. Renal matrix metalloproteinase (MMP) level/activity, cytochrome C, Bax, Bcl-2, caspase-3, p38 mitogen-activated protein kinase activation, NLRP3, and caspase-1 were also measured. Apoptotic cells in kidney were determined by TUNEL assay. Renal levels of IL-1ß and IL-6 were measured to assess inflammation. Results: Acute lung injury-induced AKI was characterized by increased plasma blood urea nitrogen, creatinine, injury biomarkers (neutrophil gelatinase-associated lipocalin, kidney injury molecule 1), and histologic evidence of renal injury. Lipopolysaccharide-treated mice demonstrated renal injury with increased levels of inflammatory cytokines (IL-1ß, IL-6), active MMP-2 and MMP-9, proapoptotic proteins (cytochrome C, Bax/Bcl-2 ratio, cleaved caspase-3), apoptotic cells, inflammasome activation (NLRP3, caspase-1), and p38 signaling. Intratracheal nCMT-3 significantly attenuated all the measured markers of renal injury, inflammation, and apoptosis. Conclusions: Pretreatment with aerosolized nCMT-3 attenuates LPS-induced AKI by inhibiting renal NLRP3 inflammasome activation, renal inflammation, and apoptosis.


Assuntos
Injúria Renal Aguda , Lesão Pulmonar Aguda , Sepse , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 3/metabolismo , Lipocalina-2 , Creatinina , Lipopolissacarídeos/farmacologia , Citocromos c/metabolismo , Interleucina-6/metabolismo , Proteína X Associada a bcl-2/metabolismo , Camundongos Endogâmicos C57BL , Injúria Renal Aguda/metabolismo , Apoptose , Caspase 1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tetraciclinas/farmacologia , Inflamação/metabolismo , Sepse/metabolismo
19.
Mol Pharm ; 9(6): 1727-35, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22530955

RESUMO

Vincristine (VCR) is a potent anticancer drug, but its clinical efficacy is limited by neurotoxicity. The field of drug delivery may provide an opportunity to increase the therapeutic index of VCR by delivering the drug specifically to tumor sites while sparing normal tissue. We have recently developed a telodendrimer (PEG(5k)-Cys(4)-L(8)-CA(8)) capable of forming disulfide cross-linked micelles (DCMs) which can encapsulate a variety of chemotherapeutics. In the present study, we encapsulated VCR into these micelles (DCM-VCR) and used them to treat lymphoma bearing mice. DCM-VCR particles have a size of 16 nm, which has been shown to be optimal for their accumulation into tumor via the enhanced permeability and retention (EPR) effect. Compared to our first-generation non-cross-linked micelles (NCMs), DCM-VCR demonstrated greater stability and slower drug release under physiological conditions. In addition, DCM-VCR exhibited a maximum tolerated dose (MTD) of 3.5 mg/kg while the MTD for conventional VCR was only 1.5 mg/kg. Using a near-infrared cyanine dye (DiD) as the surrogate drug, we showed that DCM-VCR accumulated at the tumor site starting 1 h after injection and persisted up to 72 h in lymphoma xenografted nude mice. In an in vivo efficacy study, high dose (2.5 mg/kg) DCM-VCR produced the greatest reduction in tumor volume. High dose DCM-VCR was well tolerated with no significant changes in complete blood count, serum chemistry and histology of the sciatic nerve. Mice treated with an equivalent dose (1 mg/kg) of conventional VCR and DCM-VCR controlled tumor growth equally; however, in combination with on-demand addition of the reducing agent N-acetylcysteine, DCM-VCR exhibited a superior antitumor effect compared to conventional VCR.


Assuntos
Dissulfetos/química , Linfoma de Células B/tratamento farmacológico , Micelas , Vincristina/administração & dosagem , Vincristina/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus
20.
Nanomedicine ; 8(7): 1116-24, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22197725

RESUMO

Peptides featuring the LR(S/T) motif were identified that could specifically bind to the C-type lectin-like molecule-1 (CLL1), a protein preferentially expressed on acute myeloid leukemia stem cells (LSCs). Micellar nanoparticles were covalently decorated with CLL1-targeting peptides for targeted drug delivery. The resulting peptide-coated nanoparticles were 13.5 nm in diameter and could be loaded with 5 mg of daunorubicin per 20 mg of telodendrimers. These "targeting nanomicelles" transported the drug load to the interior of cells expressing CLL1 and to LSCs isolated from clinical specimens in vitro, but did not bind to normal blood or normal hematopoietic stem cells. The presence of CLL1-targeting peptides on the surface of the nanomicelles enabled the improved binding and delivery of substantially more daunorubicin into the cells expressing CLL1 and CD34(+) leukemic cells compared with unmodified nanomicelles. In conclusion, nanomicelles coated with CLL1-targeting peptides are potentially useful for eradicating LSCs and improving leukemia therapy. FROM THE CLINICAL EDITOR: Micellar nanoparticles covalently decorated with targeting peptides were used for targeted drug delivery of daunorubicin to address acute myeloid leukemia stem cells.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Daunorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Lectinas Tipo C/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Peptídeos/metabolismo , Sequência de Aminoácidos , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Daunorrubicina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Nanopartículas/química , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptídeos/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa