Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 204: 107214, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763328

RESUMO

Studies have shown that the microbiota-gut-brain axis is highly correlated with the pathogenesis of depression in humans. However, whether independent oral microbiome that do not depend on gut microbes could affect the progression of depression in human beings remains unclear, neither does the presence and underlying mechanisms of the microbiota-oral-brain axis in the development of the condition. Hence this study that encompasses clinical and animal experiments aims at investigating the correlation between oral microbiota and the onset of depression via mediating the microbiota-oral-brain axis. We compared the oral microbial compositions and metabolomes of 87 patients with depressive symptoms versus 70 healthy controls. We found that the oral microbial and metabolic signatures were significantly different between the two groups. Significantly, germ-free (GF) mice transplanted with saliva from mice exposing to chronic restraint stress (CRS) displayed depression-like behavior and oral microbial dysbiosis. This was characterized by a significant differential abundance of bacterial species, including the enrichment of Pseudomonas, Pasteurellaceae, and Muribacter, as well as the depletion of Streptococcus. Metabolomic analysis showed the alternation of metabolites in the plasma of CRS-exposed GF mice, especially Eicosapentaenoic Acid. Furthermore, oral and gut barrier dysfunction caused by CRS-induced oral microbiota dysbiosis may be associated with increased blood-brain barrier permeability. Pseudomonas aeruginosa supplementation exacerbated depression-like behavior, while Eicosapentaenoic Acid treatment conferred protection against depression-like states in mice. These results suggest that oral microbiome and metabolic function dysbiosis may be relevant to the pathogenesis and pathophysiology of depression. The proposed microbiota-oral-brain axis provides a new way and targets for us to study the pathogenesis of depression.


Assuntos
Depressão , Disbiose , Estresse Psicológico , Animais , Disbiose/metabolismo , Depressão/metabolismo , Depressão/microbiologia , Depressão/psicologia , Depressão/etiologia , Masculino , Humanos , Estresse Psicológico/metabolismo , Estresse Psicológico/microbiologia , Estresse Psicológico/psicologia , Feminino , Adulto , Camundongos , Restrição Física/psicologia , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal , Eixo Encéfalo-Intestino , Boca/microbiologia , Pessoa de Meia-Idade , Saliva/metabolismo , Saliva/microbiologia , Comportamento Animal , Barreira Hematoencefálica/metabolismo
2.
BMC Psychiatry ; 24(1): 246, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566067

RESUMO

BACKGROUND: The Hospital Consultants' Job Stress Questionnaire (HCJSQ) has been widely used to assess sources and levels of job stress. However, its reliability and validity among Chinese dental workers have not been extensively studied. The objective of this study was to assess the reliability and validity of the HCJSQ specifically in Chinese dental workers. METHODS: The HCJSQ was used to explore the sources and the global ratings of job stress among Chinese dental workers. To assess the reliability and validity of the HCJSQ, various statistical measures were employed, including Cronbach's alpha coefficient, Spearman-Brown coefficient, Spearman correlation coefficient, exploratory factor analysis, confirmatory factor analysis, convergent validity, and discriminant validity. RESULTS: Of the participants, 526 (17.4%) reported high levels of stress, while 1,246 (41.3%) and 1,248 (41.3%) reported moderate and low levels of stress, respectively. The Cronbach's alpha coefficient for the modified HCJSQ was 0.903, and the Spearman-Brown coefficient was 0.904. Spearman correlation coefficient between individuals' items and the total score ranged from 0.438 to 0.785 (p < 0.05). Exploratory factor analysis revealed that three factors accounted for 60.243% of the total variance. Confirmatory factor analysis demonstrated factor loadings between 0.624 and 0.834 on the specified items. The fit indices of the confirmatory factor analysis indicated good model fit, with a Root Mean Square Error of Approximation of 0.064, Normative Fit Index of 0.937, Comparative Fit Index of 0.952, Incremental Fit Index of 0.952, Tucker-Lewis index of 0.941, and Goodness of Fit Index of 0.944. Additionally, the convergent validity and discriminant validity showed a good fit for the three-factor model. CONCLUSION: The results of this study confirm that Chinese dental workers experience high levels of stress, and the three-factor model of the HCJSQ proves to be a suitable instrument for evaluating the sources and levels of job stress among Chinese dental workers. Therefore, it is imperative that relevant entities such as hospitals, medical associations, and government take appropriate measures to address the existing situation.


Assuntos
COVID-19 , Estresse Ocupacional , Humanos , Reprodutibilidade dos Testes , Consultores , Pandemias , Psicometria , China , Estresse Ocupacional/diagnóstico , Inquéritos e Questionários , Análise Fatorial , Hospitais
3.
Oral Dis ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169073

RESUMO

OBJECTIVES: Recurrent aphthous ulcer (RAU) is a prevalent oral mucosal disease, affecting around 20% of the global population. It can greatly impair the quality of life for affected individuals. However, the exact etiology of RAU remains unknown. SUBJECTS AND METHODS: 16S rRNA sequencing (16S rRNA-seq) and non-targeted liquid chromatography-mass spectrometry (LC-MS) were employed to investigate the salivary microbiota and metabolic phenotype between RAU patients (N = 61) and healthy controls (HCs) (N = 105). RESULTS: Findings from 16S rRNA -seq indicated reduced oral microbial diversity in RAU patients compared to HCs, but increased interactions. Clinical variables did not show any significant association with the overall diversity of oral microbiota in RAU patients. However, significant correlations were observed between specific microorganisms and clinical variables. LC-MS results revealed dysregulation of amino acid, lipid, nucleotide, and caffeine metabolism in RAU patients. Furthermore, correlation analysis of 16S rRNA-seq and LC-MS data revealed a significant association between salivary microbiota and metabolites in RAU patients. CONCLUSIONS: Our study revealed notable differences in salivary microbiota and metabolic profiles between RAU patients and HCs, indicating a strong link between oral microbiota dysbiosis, metabolic disturbances, and the onset and progression of RAU.

4.
J Asian Nat Prod Res ; 26(1): 78-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38069835

RESUMO

Phytochemical investigation on the aerial parts of Salvia deserta led to the isolation of eight new pentacyclic triterpenoids including three oleanane- (1 - 3) and five ursane-type (4 - 8) triterpenoids, whose structures were elucidated based on extensive spectroscopic analysis and quantum chemical calculation. Weak immunosuppressive potency was observed for compounds 1, 2, and 4 - 8 via inhibiting the secretion of cytokines TNF-α and IL-6 in LPS-induced macrophages RAW264.7 at 20 µM. In addition, compounds 1, 2, and 4 - 6 exhibited moderate protective activity on t-BHP-induced oxidative injury in HepG2 cells.


Assuntos
Salvia , Triterpenos , Triterpenos/farmacologia , Triterpenos/química , Salvia/química , Estrutura Molecular , Citocinas , Componentes Aéreos da Planta/química
5.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000185

RESUMO

Furofuran lignans have been identified as the main substances responsible for the biological activities of the plant genus Phryma. Here, four new phrymarolin-type leptolignans A-D (7-10) and eight previously known lignans were isolated from P. leptostachya. Of these, nine exhibited significant antifeedant activity against armyworm (Mythimna separata) through a dual-choice bioassay, with the EC50 values ranging from 0.58 to 10.08 µg/cm2. In particular, the newly identified lignan leptolignan A (7) showed strong antifeedant activity, with an EC50 value of 0.58 ± 0.34 µg/cm2. Further investigation found that leptolignan A can inhibit the growth and nutritional indicators in the armyworm M. separata. The concentrations of two molting hormones, 20-hydroxyecdysone and ecdysone, were also found to decrease significantly following the treatment of the armyworms with the lignan, implying that the target of the P. leptostachya lignan may be involved in 20-hydroxyecdysone and ecdysone synthesis. These results enrich our knowledge of P. leptostachya metabolite structural diversity, and provide a theoretical basis for the control of armyworm using lignans.


Assuntos
Lignanas , Animais , Lignanas/farmacologia , Lignanas/química , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Ecdisona/metabolismo , Muda/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
6.
BMC Oral Health ; 24(1): 43, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191346

RESUMO

BACKGROUND: Chronic restraint stress (CRS) has iteratively been reported to be possibly implicated in the development of numerous cancer types. However, its role in oral squamous cell carcinoma (OSCC) has not been well elucidated. Here we intended to evaluate the role and mechanism. METHODS: The effects of CRS were investigated in xenograft models of OSCC by using transcriptome sequencing, LC-MS, ELISA and RT-PCR. Moreover, the role of CRS and ALDH3A1 on OSCC cells was researched by using Trans-well, flow cytometry, western blotting, immunofluorescence, ATP activity and OCR assay. Furthermore, immunohistochemical staining was employed to observe the cell proliferation and invasion of OSCC in xenotransplantation models. RESULTS: CRS promoted the progression of OSCC in xenograft models, stimulated the secretion of norepinephrine and the expression of ADRB2, but decreased the expression of ALDH3A1. Moreover, CRS changed energy metabolism and increased mitochondrial metabolism markers. However, ALDH3A1 overexpression suppressed proliferation, EMT and mitochondrial metabolism of OSCC cells. CONCLUSION: Inhibition of ALDH3A1 expression plays a pivotal role in CRS promoting tumorigenic potential of OSCC cells, and the regulatory of ALDH3A1 on mitochondrial metabolism may be involved in this process.


Assuntos
Aldeído Desidrogenase , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Estresse Psicológico , Animais , Humanos , Modelos Animais de Doenças , Hormônios , Restrição Física/efeitos adversos
7.
J Cell Physiol ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36745523

RESUMO

Maize originated in southern Mexico and various hybrid varieties have been bred during domestication. All maize tissues are rich in specialized plant metabolites (SPMs), which allow the plants to resist the stresses of herbivores and pathogens or environmental factors. To date, a total of 95 terpenoids, 91 phenolics, 31 alkaloids, and 6 other types of compounds have been identified from maize. Certain volatile sesquiterpenes released by maize plants attract the natural enemies of maize herbivores and provide an indirect defensive function. Kauralexins and dolabralexins are the most abundant diterpenoids in maize and are known to regulate and stabilize the maize rhizosphere microbial community. Benzoxazinoids and benzoxazolinones are the main alkaloids in maize and are found in maize plants at the highest concentrations at the seedling stage. These two kinds of alkaloids directly resist herbivory and pathogenic infection. Phenolics enhance the cross-links between maize cell walls. Meanwhile, SPMs also regulate plant-plant relationships. In conclusion, SPMs in maize show a large diversity of chemical structures and broad-spectrum biological activities. We use these to provide ideas and information to enable the improvement of maize resistances through breeding and to promote the rapid development of the maize industry.

8.
J Chem Ecol ; 49(5-6): 287-298, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36847993

RESUMO

Plant latex is sequestered in laticiferous structures and exuded immediately from damaged plant tissues. The primary function of plant latex is related to defense responses to their natural enemies. Euphorbia jolkinii Boiss. is a perennial herbaceous plant that greatly threaten the biodiversity and ecological integrity of northwest Yunnan, China. Nine triterpenes (1-9), four non-protein amino acids (10-13) and three glycosides (14-16) including a new isopentenyl disaccharide (14), were isolated and identified from the latex of E. jolkinii. Their structures were established on the basis of comprehensive spectroscopic data analyses. Bioassay revealed that meta-tyrosine (10) showed significant phytotoxic activity, inhibiting root and shoot growth of Zea mays, Medicago sativa, Brassica campestris, and Arabidopsis thaliana, with EC50 values ranging from 4.41 ± 1.08 to 37.60 ± 3.59 µg/mL. Interestingly, meta-tyrosine inhibited the root growth of Oryza sativa, but promoted their shoot growth at the concentrations below 20 µg/mL. meta-Tyrosine was found to be the predominant constituent in polar part of the latex extract from both stems and roots of E. jolkinii, but undetectable in the rhizosphere soil. In addition, some triterpenes showed antibacterial and nematicidal effects. The results suggested that meta-tyrosine and triterpenes in the latex might function as defensive substances for E. jolkinii against other organisms.


Assuntos
Euphorbia , Triterpenos , Látex/química , Euphorbia/fisiologia , China , Triterpenos/química , Glicosídeos
9.
J Nat Prod ; 86(11): 2468-2473, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37939268

RESUMO

Three unusual sesterterpenoids featuring unprecedented rearranged colquhounane (C25) and tetranorcolquhounane (C21) frameworks, colquhounoids E (1) and F (3) and norcolquhounoid F (2), were isolated from a Lamiaceae medicinal plant Colquhounia coccinea var. mollis. Their structures were elucidated by spectroscopic analysis and quantum chemical calculations. A biomimetic inspired regioselective cyclopropane cleavage was achieved under acidic conditions. The immunosuppressive activities of these new sesterterpenoids were also evaluated.


Assuntos
Lamiaceae , Plantas Medicinais , Análise Espectral , Lamiaceae/química , Estrutura Molecular
10.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069376

RESUMO

Rice (Oryza sativa L.) is thought to have been domesticated many times independently in China and India, and many modern cultivars are available. All rice tissues are rich in specialized metabolites (SPMs). To date, a total of 181 terpenoids, 199 phenolics, 41 alkaloids, and 26 other types of compounds have been detected in rice. Some volatile sesquiterpenoids released by rice are known to attract the natural enemies of rice herbivores, and play an indirect role in defense. Momilactone, phytocassane, and oryzalic acid are the most common diterpenoids found in rice, and are found at all growth stages. Indolamides, including serotonin, tryptamine, and N-benzoylserotonin, are the main rice alkaloids. The SPMs mainly exhibit defense functions with direct roles in resisting herbivory and pathogenic infections. In addition, phenolics are also important in indirect defense, and enhance wax deposition in leaves and promote the lignification of stems. Meanwhile, rice SPMs also have allelopathic effects and are crucial in the regulation of the relationships between different plants or between plants and microorganisms. In this study, we reviewed the various structures and functions of rice SPMs. This paper will provide useful information and methodological resources to inform the improvement of rice resistance and the promotion of the rice industry.


Assuntos
Alcaloides , Diterpenos , Oryza , Oryza/metabolismo , Terpenos/metabolismo , Diterpenos/metabolismo , Plantas/metabolismo , Alcaloides/metabolismo , Herbivoria
11.
New Phytol ; 229(3): 1740-1754, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32929734

RESUMO

Eupatorium adenophorum is a malignant invasive plant possessing extraordinary defense potency, but its chemical weaponry and formation mechanism have not yet been extensively investigated. We identified six cadinene sesquiterpenes, including two volatiles (amorpha-4,7(11)-diene and (-)-amorph-4-en-7-ol) and four nonvolatiles (9-oxo-10,11-dehydroageraphorone, muurol-4-en-3,8-dione, 9-oxo-ageraphorone and 9ß-hydroxy-ageraphorone), as the major constitutive and inducible chemicals of E. adenophorum. All cadinenes showed potent antifeedant activity against a generalist insect Spodoptera exigua, indicating that they have significant defensive roles. We cloned and functionally characterized a sesquiterpene synthase from E. adenophorum (EaTPS1), catalyzing the conversion of farnesyl diphosphate to amorpha-4,7(11)-diene and (-)-amorph-4-en-7-ol, which were purified from engineered Escherichia coli and identified by extensive nuclear magnetic resonance (NMR) spectroscopy. EaTPS1 was highly expressed in the aboveground organs, which was congruent with the dominant distribution of cadinenes, suggesting that EaTPS1 is likely involved in cadinene biosynthesis. Mechanical wounding and methyl jasmonate negatively regulated EaTPS1 expression but caused the release of amorpha-4,7(11)-diene and (-)-amorph-4-en-7-ol. Nicotiana benthamiana transiently expressing EaTPS1 also produced amorpha-4,7(11)-diene and (-)-amorph-4-en-7-ol, and showed enhanced defense function. The findings presented here uncover the role and formation of the chemical defense mechanism of E. adenophorum - which probably contributes to the invasive success of this plant - and provide a tool for manipulating the biosynthesis of biologically active cadinene natural products.


Assuntos
Ageratina , Sesquiterpenos , Extratos Vegetais , Nicotiana
12.
J Org Chem ; 86(16): 11169-11176, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33826334

RESUMO

A pair of new C-14 epimeric sesterterpenoids, colquhounoid D (1) and 14-epi-colquhounoid D (2), and five degradation products featuring new C20 and C21 frameworks, norcolquhounoids A-E (3-7), were isolated from Colquhounia coccinea var. mollis. Their structures were elucidated by comprehensive spectroscopic analysis and single-crystal X-ray diffraction. Degradation of the C25 skeleton to the C21 skeleton was also achieved using aqueous NaIO4 and RuCl3. Compounds 1 and 2 showed significant immunosuppressive activity on the cytokine IFN-γ secretion of mouse splenocytes induced by anti-CD3/CD4 monoclonal antibodies, with IC50 of 8.38 and 5.79 µM, respectively, and compounds 5 and 6 were moderately active.


Assuntos
Estrutura Molecular , Animais , Cristalografia por Raios X , Camundongos , Análise Espectral
13.
Angew Chem Int Ed Engl ; 60(48): 25468-25476, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34580976

RESUMO

A versatile terpene synthase (LcTPS2) producing unconventional macrocyclic terpenoids was characterized from Leucosceptrum canum. Engineered Escherichia coli and Nicotiana benthamiana expressing LcTPS2 produced six 18-/14-membered sesterterpenoids including five new ones and two 14-membered diterpenoids. These products represent the first macrocyclic sesterterpenoids from plants and the largest sesterterpenoid ring system identified to date. Two variants F516A and F516G producing approximately 3.3- and 2.5-fold, respectively, more sesterterpenoids than the wild-type enzyme were engineered. Both 18- and 14-membered ring sesterterpenoids displayed significant inhibitory activity on the IL-2 and IFN-γ production of T cells probably via inhibition of the MAPK pathway. The findings will contribute to the development of efficient biocatalysts to create bioactive macrocyclic sesterterpenoids, and also herald a new potential in the well-trodden territory of plant terpenoid biosynthesis.


Assuntos
Alquil e Aril Transferases/metabolismo , Imunossupressores/farmacologia , Interferon gama/antagonistas & inibidores , Interleucina-2/antagonistas & inibidores , Compostos Macrocíclicos/farmacologia , Terpenos/farmacologia , Humanos , Imunossupressores/química , Imunossupressores/metabolismo , Interferon gama/biossíntese , Interleucina-2/biossíntese , Lamiaceae/química , Lamiaceae/metabolismo , Compostos Macrocíclicos/química , Compostos Macrocíclicos/metabolismo , Estrutura Molecular , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Terpenos/química , Terpenos/metabolismo
14.
BMC Plant Biol ; 20(1): 500, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33143644

RESUMO

BACKGROUND: Plants are known to emit diverse volatile organic compounds (VOCs), which may function as signaling substances in plant communication with other organisms. Thuja occidentalis, which is widely cultivated throughout China, releases aromatic VOCs into the air in winter and early spring. The relationship of this cultivated plant with its neighboring plants is necessary for the conservation of biodiversity. RESULTS: (-)-α-thujone (60.34 ± 5.58%) was found to be the major component in VOCs from the Shenyang population. The essential oils (EOs) from the Kunming and Shenyang populations included the major components (-)-α-thujone, fenchone, (+)-ß-thujone, and (+)-hibaene, identified using GC-MS analyses. (-)-α-thujone and (+)-hibaene were purified and identified by NMR identification. EOs and (-)-α-thujone exhibited valuable phytotoxic activities against seed germination and seedling growth of the plants Taraxacum mongolicum and Arabidopsis thaliana. Moreover, the EOs displayed potent inhibitory activity against pathogenic fungi of maize, including Fusarium graminearum, Curvularia lunata, and Bipolaris maydis, as well as one human fungal pathogen, Candida albicans. Quantitative analyses revealed high concentrations of (-)-α-thujone in the leaves of T. occidentalis individuals from both the Shenyang and Kunming populations. However, (-)-α-thujone (0.18 ± 0.17 µg/g) was only detected in the rhizosphere soil to a distance of 0.5 m from the plant. CONCLUSIONS: Taken together, our results suggest that the phytotoxic effects and antifungal activities of the EOs and (-)-α-thujone in T. occidentalis certainly increased the adaptability of this plant to the environment. Nevertheless, low concentrations of released (-)-α-thujone indicated that reasonable distance of T. occidentalis with other plant species will impair the effects of allelochemical of T. occidentalis.


Assuntos
Óleos Voláteis/metabolismo , Thuja/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Antifúngicos/metabolismo , Monoterpenos Bicíclicos/análise , China , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Óleos Voláteis/análise , Folhas de Planta/química
15.
Nat Prod Rep ; 36(4): 626-665, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30468448

RESUMO

Covering: 1960s to end of August 2018 Plant glandular trichomes (GTs) are adaptive structures that are well known as "phytochemical factories" due to their impressive capacity to biosynthesize and store large quantities of specialized natural products. The natural products in GTs are chemically diverse and mostly function as defense chemicals, therefore GTs are frequently regarded as "the first defense line" of plants against biotic and abiotic stresses. More importantly, many GT natural products are commercially desirable, thanks to their significant biological activities, thus attracting extensive interest in their biosynthesis. Consequently, it is well known that plant GTs are not only important reservoirs of biologically active natural products but are also a valuable bank of novel biosynthetic genes and enzymes. The non-volatile or oxygenated natural products in plant GTs, which need longer biosynthetic pathways and more energy from the plants, are of particular interest due to their more extensive biological activities and high commercial value. This review mainly focuses on these non-volatile natural products in plant GTs, including their chemistry, biological activities and biosynthesis. The methods employed for investigating natural products and their biosynthesis in plant GTs are also comprehensively discussed.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/metabolismo , Plantas/metabolismo , Tricomas/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/biossíntese , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Vias Biossintéticas , Flavonoides/biossíntese , Flavonoides/química , Fenóis/química , Fenóis/metabolismo , Fenóis/farmacologia , Células Vegetais/metabolismo , Plantas/genética , Terpenos/química , Terpenos/metabolismo , Compostos Orgânicos Voláteis
16.
Plant Cell ; 28(3): 804-22, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26941091

RESUMO

Plant sesterterpenoids, an important class of terpenoids, are widely distributed in various plants, including food crops. However, little is known about their biosynthesis. Here, we cloned and functionally characterized a plant geranylfarnesyl diphosphate synthase (Lc-GFDPS), the enzyme producing the C25 prenyl diphosphate precursor to all sesterterpenoids, from the glandular trichomes of the woody plant Leucosceptrum canum. GFDPS catalyzed the formation of GFDP after expression in Escherichia coli. Overexpressing GFDPS in Arabidopsis thaliana also gave an extract catalyzing GFDP formation. GFDPS was strongly expressed in glandular trichomes, and its transcript profile was completely in accordance with the sesterterpenoid accumulation pattern. GFDPS is localized to the plastids, and inhibitor studies indicated its use of isoprenyl diphosphate substrates supplied by the 2-C-methyl-D-erythritol 4-phosphate pathway. Application of a jasmonate defense hormone induced GFDPS transcript and sesterterpenoid accumulation, while reducing feeding and growth of the generalist insect Spodoptera exigua, suggesting that these C25 terpenoids play a defensive role. Phylogenetic analysis suggested that GFDPS probably evolved from plant geranylgeranyl diphosphate synthase under the influence of positive selection. The isolation of GFDPS provides a model for investigating sesterterpenoid formation in other species and a tool for manipulating the formation of this group in plants and other organisms.


Assuntos
Farnesiltranstransferase/metabolismo , Mentha/enzimologia , Spodoptera/fisiologia , Terpenos/metabolismo , Sequência de Aminoácidos , Animais , Eritritol/análogos & derivados , Eritritol/metabolismo , Farnesiltranstransferase/genética , Mentha/química , Mentha/genética , Especificidade de Órgãos , Filogenia , Plântula/química , Plântula/enzimologia , Plântula/genética , Alinhamento de Sequência , Fosfatos Açúcares/metabolismo , Terpenos/química , Tricomas/química , Tricomas/enzimologia , Tricomas/genética
17.
Bioorg Med Chem ; 27(2): 442-446, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30579802

RESUMO

A new flavoalkaloid racemate, leucoflavonine (1), together with its flavonoid precursor pectolinarigenin (2), was isolated from the leaves of Leucosceptrum canum collected from Tibet. Its structure was established by comprehensive spectroscopic analysis. Chrial separation of the enantiomers of 1 was achieved, and their absolute configurations were determined as S-(+)- and R-(-)-leucoflavonines ((+)-1a and (-)-1b) by comparison of their computational and experimental optical rotations. Biological assays indicated that both (+)-1a and (-)-1b exhibited inhibitory activity against acetylchlorinesterase (AChE) in vitro (IC50 = 68.0 ±â€¯8.6 and 18.3 ±â€¯1.8 µM, respectively). Moreover, (-)-1b displayed cytotoxicity against human hepatoma cells HepG2 (IC50 = 52.9 ±â€¯3.6 µM), and inhibited the production of interleukelin-2 (IL-2) in Jurkat cells (IC50 = 16.5 ±â€¯0.9 µM), while (+)-1a showed no obvious activity in these assays.


Assuntos
Acetilcolinesterase/metabolismo , Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Inibidores da Colinesterase/farmacologia , Flavonas/farmacologia , Interleucina-2/biossíntese , Lamiaceae/química , Folhas de Planta/química , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Enguias , Flavonas/química , Células Hep G2 , Humanos , Células Jurkat , Camundongos , Estrutura Molecular , Células RAW 264.7 , Relação Estrutura-Atividade
18.
Chem Biodivers ; 14(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28772025

RESUMO

Three new macrocyclic diterpenoids, euphoscopoids A - C (1 - 3), including two new jatrophanes and a new lathyrane, were isolated from the whole plant of Euphorbia helioscopia. Their structures were elucidated by spectroscopic methods. Antifeedant and cytotoxic activities of these isolates were evaluated. All compounds showed significant antifeedant activity against a generalist plant-feeding insect, Helicoverpa armigera, with EC50 values ranging from 2.05 to 4.34 µg/cm2 . In addition, compound 2 showed moderate cytotoxicity against tumor cell lines NCI-H1975, HepG2, and MCF-2, while compounds 1 and 3 were not active at 80 µm. The results suggested not only the defensive function of macrocyclic diterpenoids in E. helioscopia against insect herbivores, but also their potential applications as new natural insect antifeedants.


Assuntos
Diterpenos/farmacologia , Euphorbia/química , Compostos Macrocíclicos/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos/química , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Comportamento Alimentar/efeitos dos fármacos , Humanos , Compostos Macrocíclicos/química , Compostos Macrocíclicos/isolamento & purificação , Conformação Molecular , Mariposas , Relação Estrutura-Atividade
19.
Phytochem Anal ; 28(5): 404-409, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28485033

RESUMO

INTRODUCTION: Glandular trichomes of plants are biochemical factories that could produce, store and secrete copious pharmaceutically important natural products. The Labiatae plant Leonurus japonicus is an important traditional Chinese medicine used to treat gynecological diseases, and has abundant peltate glandular trichomes (PGTs), in which the secondary metabolites accumulated are still unknown. OBJECTIVE: To study the secondary metabolites specifically accumulated in the PGTs of L. japonicus and their biological activities, and provide a new way to pinpoint bioactive natural products from plants. METHODOLOGY: Morphology of the trichomes on L. japonicus were observed under a scanning electron microscope. The PGTs of L. japonicus were precisely collected using laser microdissection (LMD) and analysed for their secondary metabolites with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Targeted compounds were isolated with classical phytochemical methods, and their structures were elucidated by spectroscopic analysis. Biological activities were evaluated by in vitro assays. RESULTS: Two labdane diterpenoids, leoheterin (1) and galeopsin (2), were localised in the PGTs of L. japonicus. Antithrombotic activity of 1 in anti-platelet aggregation assay induced by arachidonic acid was observed. Both compounds showed potential anti-inflammatory activity by inhibiting proinflammatory cytokine TNF-α. In addition, anti-proliferative effect of both compounds on several cancer cell lines was also detected. CONCLUSION: Two bioactive labdane diterpenoids were localised in the PGTs of L. japonicus. The findings suggested that it might be an efficient approach to explore bioactive natural products from the glandular trichomes of medicinal plants with LMD-UPLC/MS/MS. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Diterpenos/análise , Medicamentos de Ervas Chinesas/análise , Leonurus/química , Tricomas/química , Cromatografia Líquida de Alta Pressão , Plantas Medicinais/química , Espectrometria de Massas em Tandem
20.
Sensors (Basel) ; 17(9)2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-28869510

RESUMO

This work proposes the first hot-polymer fiber Fabry-Perot interferometer (HPFFPI) anemometer for sensing airflow. The proposed HPFFPI is based on a single-mode fiber (SMF) endface that is attached to a UV-cured polymer to form an ultracompact fiber Fabry-Perot microcavity. The proposed polymer microcavity was heated using a low-cost chip resistor with a controllable dc driving power to achieve a desired polymer's steady-state temperature (T) that exceeds the T of the surrounding environment. The polymer is highly sensitive to variations of T with high repeatability. When the hot polymer was cooled by the measured flowing air, the wavelength fringes of its optical spectra shifted. The HPFFPI anemometers have been experimentally evaluated for different cavity lengths and heating power values. Experimental results demonstrate that the proposed HPFFPI responses well in terms of airflow measurement. A high sensitivity of 1.139 nm/(m/s) and a good resolution of 0.0088 m/s over the 0~2.54 m/s range of airflow were achieved with a cavity length of 10 µm and a heating power of 0.402 W.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa