Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatol Res ; 54(4): 392-402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37950561

RESUMO

AIMS: Biliary atresia (BA) is characterized by intrahepatic inflammation and rapid progression of liver fibrosis. Galectin-3, a beta-galactoside binding protein, is a key regulator of inflammation and fibrosis. The aim of this study was to characterize circulating and hepatic Galectin-3 levels in children with BA. METHODS: Plasma and liver samples were obtained from children with early BA at time of Kasai hepatoportoenterostomy, late BA at time of transplant, early and late other cholestatic liver diseases (CLD), and controls. Plasma Galectin-3 was measured using standard enzyme-linked immunoassay. Liver tissue was analyzed with multiplex immunohistochemistry and quantified using whole slide analysis. Statistical comparisons were made using nonparametric testing. RESULTS: Plasma Galectin-3 in late BA was significantly higher than in early BA (20.82 [12.45-30.46] vs. 11.30 [8.74-16.83] ng/mL, p = 0.0096). Galectin-3 levels correlated with markers of disease severity and interleukin-6. There were significantly more Galectin-3+ M2 macrophages in late BA in comparison to late other CLD (162 [157-233] vs. 49 [33-59] cells/mm2, p = 0.03). The number of Galectin-3+ M2 macrophages correlated with the number of activated hepatic stellate cells and bile duct proliferation. CONCLUSIONS: Plasma Galectin-3 is higher in late BA at time of transplant in comparison to early BA at time of Kasai. The number of Galectin-3 expressing M2 macrophages in late BA is elevated relative to late other CLD and was associated with other prognostic histological findings. Galectin-3 targeted therapy may be beneficial in slowing disease progression to cirrhosis in children with BA.

2.
J Biol Chem ; 298(11): 102530, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209823

RESUMO

Nonalcoholic steatohepatitis (NASH) is the most common chronic liver disease in the US, partly due to the increasing incidence of metabolic syndrome, obesity, and type 2 diabetes. The roles of bile acids and their receptors, such as the nuclear receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, on the development of NASH are not fully clear. C57BL/6J male mice fed a Western diet (WD) develop characteristics of NASH, allowing determination of the effects of FXR and TGR5 agonists on this disease. Here we show that the FXR-TGR5 dual agonist INT-767 prevents progression of WD-induced hepatic steatosis, inflammation, and fibrosis, as determined by histological and biochemical assays and novel label-free microscopy imaging techniques, including third harmonic generation, second harmonic generation, and fluorescence lifetime imaging microscopy. Furthermore, we show INT-767 decreases liver fatty acid synthesis and fatty acid and cholesterol uptake, as well as liver inflammation. INT-767 markedly changed bile acid composition in the liver and intestine, leading to notable decreases in the hydrophobicity index of bile acids, known to limit cholesterol and lipid absorption. In addition, INT-767 upregulated expression of liver p-AMPK, SIRT1, PGC-1α, and SIRT3, which are master regulators of mitochondrial function. Finally, we found INT-767 treatment reduced WD-induced dysbiosis of gut microbiota. Interestingly, the effects of INT-767 in attenuating NASH were absent in FXR-null mice, but still present in TGR5-null mice. Our findings support treatment and prevention protocols with the dual FXR-TGR5 agonist INT-767 arrest progression of WD-induced NASH in mice mediated by FXR-dependent, TGR5-independent mechanisms.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Ácidos e Sais Biliares , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/complicações , Dieta Ocidental , Ácidos Graxos , Fibrose , Inflamação/complicações , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
Int J Neurosci ; : 1-9, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37128910

RESUMO

PURPOSE: The aim of this study was to explore the alternations regarding the HMGB1 and TLR4/NF-κB signaling pathway in juvenile rats with febrile seizure (FS). MATERIALS AND METHODS: During the animal modeling of the FS, seizures were triggered every four days by hot water (45 °C), and repeated ten times. After forty days' modeling, rats were divided into different groups according to the degree of seizure (FS (0) - FS (V)). Reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the mRNA expressions of the HMGB1, TLR4 and NF-κB in the hippocampus, while Western-blot (WB) and immunofluorescence (IF) were employed to assess protein expressions. The enzyme-linked immunosorbent assay (ELISA) was used for analyzing the protein expressions in peripheral blood. RESULTS: The mRNA levels of the HMGB1, TLR4 and NF-κB in the hippocampus of both FS (V) and FS (IV) groups were significantly higher than WT, while there was no difference between FS (III) and WT. Concerning protein expressions, increased levels of the HMGB1, TLR4, and NF-κB in FS (V) were observed with a good consistency between the WB and IF, while no significant upregulation was shown in FS (IV). The ELISA results showed that the significance of the augmented proteins between the FS (V) and WT were smaller in the serum than the hippocampus. CONCLUSIONS: Our study shows seizure degree-related upregulations of HMGB1 and TLR4/NF-κB signaling pathway both in hippocampus and serum of juvenile rats with FS, suggesting the involvement of TLR/NF-κB pathway in inflammation promoted by HMGB1 during FS.

4.
Hepatology ; 73(5): 1855-1867, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32767570

RESUMO

BACKGROUND AND AIMS: The etiology of biliary atresia (BA) is not known and is likely multifactorial, including a genetic predisposition, a viral or environmental trigger, an aberrant autoimmune response targeting cholangiocytes, and unique susceptibilities of the neonatal bile ducts to injury. Damaged cholangiocytes may express neo self-antigens and elicit autoreactive T-cell-mediated inflammation and B-cell production of autoantibodies. The aim of this study was to discover autoantibodies in BA that correlated with outcomes. APPROACH AND RESULTS: An autoantigen microarray encompassing approximately 9,500 autoantigens was used to screen for serum immunoglobulin M (IgM) and immunoglobulin G (IgG) autoantibodies in patients with BA or other liver disease controls. Validation of candidate autoantibodies by enzyme-linked immunosorbent assay on a second cohort of subjects (6-12 months following Kasai portoenterostomy) and correlations of autoantibodies with outcomes were performed (serum bilirubin levels and need for liver transplant in first 2 years of life). Mean anti-chitinase 3-like 1 (CHI3L1), anti-delta-like ligand (DLL-4), and antisurfactant protein D (SFTPD) IgM autoantibodies in BA were significantly higher compared with controls, and IgM autoantibody levels positively correlated with worse outcomes. Immunofluorescence revealed cholangiocyte-predominant expression of CHI3L1, DLL-4, and SFTPD. The humoral autoantibody response was associated with C3d complement activation and T-cell autoimmunity, based on detection of cholangiocyte-predominant C3d co-staining and peripheral blood autoreactive T cells specific to CHI3L1, DLL-4 and SFTPD, respectively. CONCLUSIONS: BA is associated with cholangiocyte-predominant IgM autoantibodies in the first year after Kasai portoenterostomy. Anti-CHI3L1, anti-DLL-4, and anti-SFTPD IgM autoantibody correlations with worse outcomes and the detection of C3d on cholangioctyes and antigen-specific autoreactive T cells suggest that autoimmunity plays a role in the ongoing bile duct injury and progression of disease.


Assuntos
Autoanticorpos/imunologia , Ductos Biliares Extra-Hepáticos/imunologia , Atresia Biliar/imunologia , Imunoglobulina M/imunologia , Ductos Biliares Extra-Hepáticos/citologia , Atresia Biliar/cirurgia , Linhagem Celular , Pré-Escolar , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Humanos , Lactente , Masculino , Portoenterostomia Hepática
5.
J Biol Chem ; 295(14): 4733-4747, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32075905

RESUMO

Nonalcoholic fatty liver disease is a rapidly rising problem in the 21st century and is a leading cause of chronic liver disease that can lead to end-stage liver diseases, including cirrhosis and hepatocellular cancer. Despite this rising epidemic, no pharmacological treatment has yet been established to treat this disease. The rapidly increasing prevalence of nonalcoholic fatty liver disease and its aggressive form, nonalcoholic steatohepatitis (NASH), requires novel therapeutic approaches to prevent disease progression. Alterations in microbiome dynamics and dysbiosis play an important role in liver disease and may represent targetable pathways to treat liver disorders. Improving microbiome properties or restoring normal bile acid metabolism may prevent or slow the progression of liver diseases such as NASH. Importantly, aberrant systemic circulation of bile acids can greatly disrupt metabolic homeostasis. Bile acid sequestrants are orally administered polymers that bind bile acids in the intestine, forming nonabsorbable complexes. Bile acid sequestrants interrupt intestinal reabsorption of bile acids, decreasing their circulating levels. We determined that treatment with the bile acid sequestrant sevelamer reversed the liver injury and prevented the progression of NASH, including steatosis, inflammation, and fibrosis in a Western diet-induced NASH mouse model. Metabolomics and microbiome analysis revealed that this beneficial effect is associated with changes in the microbiota population and bile acid composition, including reversing microbiota complexity in cecum by increasing Lactobacillus and decreased Desulfovibrio The net effect of these changes was improvement in liver function and markers of liver injury and the positive effects of reversal of insulin resistance.


Assuntos
Ácidos e Sais Biliares/metabolismo , Dieta Ocidental , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/patologia , Sevelamer/farmacologia , Animais , Ácidos e Sais Biliares/química , Ceco/microbiologia , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colesterol/análise , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Modelos Animais de Doenças , Fezes/química , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Sevelamer/química , Sevelamer/uso terapêutico , Índice de Gravidade de Doença , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
6.
J Am Soc Nephrol ; 29(1): 118-137, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089371

RESUMO

Bile acids are ligands for the nuclear hormone receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5. We have shown that FXR and TGR5 have renoprotective roles in diabetes- and obesity-related kidney disease. Here, we determined whether these effects are mediated through differential or synergistic signaling pathways. We administered the FXR/TGR5 dual agonist INT-767 to DBA/2J mice with streptozotocin-induced diabetes, db/db mice with type 2 diabetes, and C57BL/6J mice with high-fat diet-induced obesity. We also examined the individual effects of the selective FXR agonist obeticholic acid (OCA) and the TGR5 agonist INT-777 in diabetic mice. The FXR agonist OCA and the TGR5 agonist INT-777 modulated distinct renal signaling pathways involved in the pathogenesis and treatment of diabetic nephropathy. Treatment of diabetic DBA/2J and db/db mice with the dual FXR/TGR5 agonist INT-767 improved proteinuria and prevented podocyte injury, mesangial expansion, and tubulointerstitial fibrosis. INT-767 exerted coordinated effects on multiple pathways, including stimulation of a signaling cascade involving AMP-activated protein kinase, sirtuin 1, PGC-1α, sirtuin 3, estrogen-related receptor-α, and Nrf-1; inhibition of endoplasmic reticulum stress; and inhibition of enhanced renal fatty acid and cholesterol metabolism. Additionally, in mice with diet-induced obesity, INT-767 prevented mitochondrial dysfunction and oxidative stress determined by fluorescence lifetime imaging of NADH and kidney fibrosis determined by second harmonic imaging microscopy. These results identify the renal signaling pathways regulated by FXR and TGR5, which may be promising targets for the treatment of nephropathy in diabetes and obesity.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/prevenção & controle , Túbulos Renais/patologia , Obesidade/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Albuminúria/etiologia , Animais , Ácidos e Sais Biliares/farmacologia , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacologia , Colesterol/metabolismo , Ácidos Cólicos/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/patologia , Progressão da Doença , Estresse do Retículo Endoplasmático , Fibrose , Mesângio Glomerular/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mitocôndrias/metabolismo , Obesidade/complicações , Estresse Oxidativo , Podócitos/patologia , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Triglicerídeos/metabolismo
7.
J Biol Chem ; 292(29): 12018-12024, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28596381

RESUMO

Even in healthy individuals, renal function gradually declines during aging. However, an observed variation in the rate of this decline has raised the possibility of slowing or delaying age-related kidney disease. One of the most successful interventional measures that slows down and delays age-related kidney disease is caloric restriction. We undertook the present studies to search for potential factors that are regulated by caloric restriction and act as caloric restriction mimetics. Based on our prior studies with the bile acid-activated nuclear hormone receptor farnesoid X receptor (FXR) and G protein-coupled membrane receptor TGR5 that demonstrated beneficial effects of FXR and TGR5 activation in the kidney, we reasoned that FXR and TGR5 could be excellent candidates. We therefore determined the effects of aging and caloric restriction on the expression of FXR and TGR5 in the kidney. We found that FXR and TGR5 expression levels are decreased in the aging kidney and that caloric restriction prevents these age-related decreases. Interestingly, in long-lived Ames dwarf mice, renal FXR and TGR5 expression levels were also increased. A 2-month treatment of 22-month-old C57BL/6J mice with the FXR-TGR5 dual agonist INT-767 induced caloric restriction-like effects and reversed age-related increases in proteinuria, podocyte injury, fibronectin accumulation, TGF-ß expression, and, most notably, age-related impairments in mitochondrial biogenesis and mitochondrial function. Furthermore, in podocytes cultured in serum obtained from old mice, INT-767 prevented the increases in the proinflammatory markers TNF-α, toll-like receptor 2 (TLR2), and TLR4. In summary, our results indicate that FXR and TGR5 may play an important role in modulation of age-related kidney disease.


Assuntos
Envelhecimento , Anti-Inflamatórios não Esteroides/uso terapêutico , Ácidos e Sais Biliares/uso terapêutico , Rim/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Acoplados a Proteínas G/agonistas , Insuficiência Renal/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Ácidos e Sais Biliares/farmacologia , Restrição Calórica , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Rim/imunologia , Rim/metabolismo , Rim/patologia , Longevidade , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mitocôndrias/enzimologia , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Renovação Mitocondrial , Podócitos/efeitos dos fármacos , Podócitos/imunologia , Podócitos/metabolismo , Podócitos/patologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Insuficiência Renal/prevenção & controle
8.
J Biol Chem ; 292(13): 5335-5348, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28196866

RESUMO

There is very limited human renal sodium gradient-dependent glucose transporter protein (SGLT2) mRNA and protein expression data reported in the literature. The first aim of this study was to determine SGLT2 mRNA and protein levels in human and animal models of diabetic nephropathy. We have found that the expression of SGLT2 mRNA and protein is increased in renal biopsies from human subjects with diabetic nephropathy. This is in contrast to db-db mice that had no changes in renal SGLT2 protein expression. Furthermore, the effect of SGLT2 inhibition on renal lipid content and inflammation is not known. The second aim of this study was to determine the potential mechanisms of beneficial effects of SGLT2 inhibition in the progression of diabetic renal disease. We treated db/db mice with a selective SGLT2 inhibitor JNJ 39933673. We found that SGLT2 inhibition caused marked decreases in systolic blood pressure, kidney weight/body weight ratio, urinary albumin, and urinary thiobarbituric acid-reacting substances. SGLT2 inhibition prevented renal lipid accumulation via inhibition of carbohydrate-responsive element-binding protein-ß, pyruvate kinase L, SCD-1, and DGAT1, key transcriptional factors and enzymes that mediate fatty acid and triglyceride synthesis. SGLT2 inhibition also prevented inflammation via inhibition of CD68 macrophage accumulation and expression of p65, TLR4, MCP-1, and osteopontin. These effects were associated with reduced mesangial expansion, accumulation of the extracellular matrix proteins fibronectin and type IV collagen, and loss of podocyte markers WT1 and synaptopodin, as determined by immunofluorescence microscopy. In summary, our study showed that SGLT2 inhibition modulates renal lipid metabolism and inflammation and prevents the development of nephropathy in db/db mice.


Assuntos
Nefropatias Diabéticas/metabolismo , Nefropatias/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Diabetes Mellitus Experimental , Nefropatias Diabéticas/prevenção & controle , Humanos , Inflamação/prevenção & controle , Camundongos , RNA Mensageiro/análise , Transportador 2 de Glucose-Sódio/análise , Transportador 2 de Glucose-Sódio/genética
9.
FASEB J ; 31(4): 1434-1448, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28007783

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is widespread in adults and children. Early exposure to maternal obesity or Western-style diet (WD) increases steatosis and oxidative stress in fetal liver and is associated with lifetime disease risk in the offspring. Pyrroloquinoline quinone (PQQ) is a natural antioxidant found in soil, enriched in human breast milk, and essential for development in mammals. We investigated whether a supplemental dose of PQQ, provided prenatally in a mouse model of diet-induced obesity during pregnancy, could protect obese offspring from progression of NAFLD. PQQ treatment given pre- and postnatally in WD-fed offspring had no effect on weight gain but increased metabolic flexibility while reducing body fat and liver lipids, compared with untreated obese offspring. Indices of NAFLD, including hepatic ceramide levels, oxidative stress, and expression of proinflammatory genes (Nos2, Nlrp3, Il6, and Ptgs2), were decreased in WD PQQ-fed mice, concomitant with increased expression of fatty acid oxidation genes and decreased Pparg expression. Notably, these changes persisted even after PQQ withdrawal at weaning. Our results suggest that supplementation with PQQ, particularly during pregnancy and lactation, protects offspring from WD-induced developmental programming of hepatic lipotoxicity and may help slow the advancing epidemic of NAFLD in the next generation.-Jonscher, K. R., Stewart, M. S., Alfonso-Garcia, A., DeFelice, B. C., Wang, X. X., Luo, Y., Levi, M., Heerwagen, M. J. R., Janssen, R. C., de la Houssaye, B. A., Wiitala, E., Florey, G., Jonscher, R. L., Potma, E. O., Fiehn, O. Friedman, J. E. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice.


Assuntos
Antioxidantes/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/complicações , Cofator PQQ/uso terapêutico , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Ceramidas/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Feminino , Interleucina-6/genética , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/tratamento farmacológico , Obesidade/etiologia , Estresse Oxidativo , PPAR gama/metabolismo , Cofator PQQ/administração & dosagem , Cofator PQQ/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/etiologia
10.
Int J Mol Sci ; 19(1)2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301371

RESUMO

Obesity and obesity related kidney and liver disease have become more prevalent over the past few decades, especially in the western world. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with promising effects on cardiovascular and renal function. Given SGLT2 inhibitors exert both anti-diabetic and anti-obesity effects by promoting urinary excretion of glucose and subsequent caloric loss, we investigated the effect of the highly selective renal SGLT2 inhibitor dapagliflozin in mice with Western diet (WD) induced obesity. Low fat (LF) diet or WD-fed male C57BL/6J mice were treated with dapagliflozin for 26 weeks. Dapagliflozin attenuated the WD-mediated increases in body weight, plasma glucose and plasma triglycerides. Treatment with dapagliflozin prevented podocyte injury, glomerular pathology and renal fibrosis determined by second harmonic generation (SHG), nephrin, synaptopodin, collagen IV, and fibronectin immunofluorescence microscopy. Oil Red O staining showed dapagliflozin also decreased renal lipid accumulation associated with decreased SREBP-1c mRNA abundance. Moreover, renal inflammation and oxidative stress were lower in the dapagliflozin-treated WD-fed mice than in the untreated WD-fed mice. In addition, dapagliflozin decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), hepatic lipid accumulation as determined by H&E and Oil Red O staining, and Coherent Anti-Stokes Raman Scattering (CARS) microscopy, and hepatic fibrosis as determined by picrosirius red (PSR) staining and TPE-SHG microscopy in WD-fed mice. Thus, our study demonstrated that the co-administration of the SGLT2 inhibitor dapagliflozin attenuates renal and liver disease during WD feeding of mice.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Glucosídeos/uso terapêutico , Nefropatias/prevenção & controle , Hepatopatias/prevenção & controle , Obesidade/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Compostos Benzidrílicos/farmacologia , Glicemia/metabolismo , Dieta Ocidental , Glucosídeos/farmacologia , Inflamação/complicações , Inflamação/patologia , Resistência à Insulina , Nefropatias/sangue , Nefropatias/complicações , Nefropatias/tratamento farmacológico , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Hepatopatias/sangue , Hepatopatias/complicações , Hepatopatias/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/sangue , Estresse Oxidativo/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
11.
J Biol Chem ; 291(44): 23058-23067, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27605663

RESUMO

Bile acid sequestrants are synthetic polymers that bind bile acids in the gut and are used to treat dyslipidemia and hyperphosphatemia. Recently, these agents have been reported to lower blood glucose and increase insulin sensitivity by altering bile acid signaling pathways. In this study, we assessed the efficacy of sevelamer in treating mice with non-alcoholic fatty liver disease (NAFLD). We also analyzed how sevelamer alters inflammation and bile acid signaling in NAFLD livers. Mice were fed a low-fat or Western diet for 12 weeks followed by a diet-plus-sevelamer regimen for 2 or 12 weeks. At the end of treatment, disease severity was assessed, hepatic leukocyte populations were examined, and expression of genes involved in farnesoid X receptor (FXR) signaling in the liver and intestine was analyzed. Sevelamer treatment significantly reduced liver steatosis and lobular inflammation. Sevelamer-treated NAFLD livers had notably fewer pro-inflammatory infiltrating macrophages and a significantly greater fraction of alternatively activated Kupffer cells compared with controls. Expression of genes involved in FXR signaling in the liver and intestine was significantly altered in mice with NAFLD as well as in those treated with sevelamer. In a mouse model of NAFLD, sevelamer improved disease and counteracted innate immune cell dysregulation in the liver. This study also revealed a dysregulation of FXR signaling in the liver and intestine of NAFLD mice that was counteracted by sevelamer treatment.


Assuntos
Anti-Inflamatórios/administração & dosagem , Imunidade Inata/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/metabolismo , Sevelamer/administração & dosagem , Animais , Modelos Animais de Doenças , Humanos , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/efeitos dos fármacos
12.
J Am Soc Nephrol ; 27(5): 1362-78, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26424786

RESUMO

Obesity and diabetes mellitus are the leading causes of renal disease. In this study, we determined the regulation and role of the G protein-coupled bile acid receptor TGR5, previously shown to be regulated by high glucose and/or fatty acids, in obesity-related glomerulopathy (ORG) and diabetic nephropathy (DN). Treatment of diabetic db/db mice with the selective TGR5 agonist INT-777 decreased proteinuria, podocyte injury, mesangial expansion, fibrosis, and CD68 macrophage infiltration in the kidney. INT-777 also induced renal expression of master regulators of mitochondrial biogenesis, inhibitors of oxidative stress, and inducers of fatty acid ß-oxidation, including sirtuin 1 (SIRT1), sirtuin 3 (SIRT3), and Nrf-1. Increased activity of SIRT3 was evidenced by normalization of the increased acetylation of mitochondrial superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2) observed in untreated db/db mice. Accordingly, INT-777 decreased mitochondrial H2O2 generation and increased the activity of SOD2, which associated with decreased urinary levels of H2O2 and thiobarbituric acid reactive substances. Furthermore, INT-777 decreased renal lipid accumulation. INT-777 also prevented kidney disease in mice with diet-induced obesity. In human podocytes cultured with high glucose, INT-777 induced mitochondrial biogenesis, decreased oxidative stress, and increased fatty acid ß-oxidation. Compared with normal kidney biopsy specimens, kidney specimens from patients with established ORG or DN expressed significantly less TGR5 mRNA, and levels inversely correlated with disease progression. Our results indicate that TGR5 activation induces mitochondrial biogenesis and prevents renal oxidative stress and lipid accumulation, establishing a role for TGR5 in inhibiting kidney disease in obesity and diabetes.


Assuntos
Ácidos Cólicos/farmacologia , Ácidos Cólicos/uso terapêutico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/prevenção & controle , Nefropatias/etiologia , Nefropatias/prevenção & controle , Obesidade/complicações , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/fisiologia , Animais , Ácidos e Sais Biliares , Humanos , Peróxido de Hidrogênio , Masculino , Camundongos , Estresse Oxidativo , Podócitos , Transdução de Sinais , Superóxido Dismutase
13.
J Biol Chem ; 288(19): 13850-62, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23546875

RESUMO

BACKGROUND: Small ubiquitin-like modifiers (SUMO) are covalently conjugated to other proteins including nuclear receptors leading to modification of various cellular processes. RESULTS: Ligand-dependent SUMOylation of farnesoid X receptor (FXR) negatively regulates the expression of its target genes. CONCLUSION: SUMO modification attenuates the capacity of FXR to function as a transcriptional activator. SIGNIFICANCE: Defining post-translation modification of FXR bySUMOis important to understanding how this nuclear receptor functions in health and disease. The farnesoid X receptor (FXR) belongs to a family of ligand-activated transcription factors that regulate many aspects of metabolism including bile acid homeostasis. Here we show that FXR is covalently modified by the small ubiquitin-like modifier (Sumo1), an important regulator of cell signaling and transcription. Well conserved consensus sites at lysine 122 and 275 in the AF-1 and ligand binding domains, respectively, of FXR were subject to SUMOylation in vitro and in vivo. Chromatin immunoprecipitation (ChIP) analysis showed that Sumo1 was recruited to the bile salt export pump (BSEP), the small heterodimer partner (SHP), and the OSTα-OSTß organic solute transporter loci in a ligand-dependent fashion. Sequential chromatin immunoprecipitation (ChIP-ReChIP) verified the concurrent binding of FXR and Sumo1 to the BSEP and SHP promoters. Overexpression of Sumo1 markedly decreased binding and/or recruitment of FXR to the BSEP and SHP promoters on ChIP-ReChIP. SUMOylation did not have an apparent effect on nuclear localization of FXR. Expression of Sumo1 markedly inhibited the ligand-dependent, transactivation of BSEP and SHP promoters by FXR/retinoid X receptor α (RXRα) in HepG2 cells. In contrast, mutations that abolished SUMOylation of FXR or siRNA knockdown of Sumo1 expression augmented the transactivation of BSEP and SHP promoters by FXR. Pathways for SUMOylation were significantly altered during obstructive cholestasis with differential Sumo1 recruitment to the promoters of FXR target genes. In conclusion, FXR is subject to SUMOylation that regulates its capacity to transactivate its target genes in normal liver and during obstructive cholestasis.


Assuntos
Regulação da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/metabolismo , Sumoilação , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Colestase/metabolismo , Cromatina/metabolismo , Sequência Consenso , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , RNA Interferente Pequeno/genética , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Transcrição Gênica
14.
J Biol Chem ; 288(1): 570-80, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23148215

RESUMO

Biliary pancreatitis is the leading cause of acute pancreatitis in both children and adults. A proposed mechanism is the reflux of bile into the pancreatic duct. Bile acid exposure causes pancreatic acinar cell injury through a sustained rise in cytosolic Ca(2+). Thus, it would be clinically relevant to know the targets of this aberrant Ca(2+) signal. We hypothesized that the Ca(2+)-activated phosphatase calcineurin is such a Ca(2+) target. To examine calcineurin activation, we infected primary acinar cells from mice with an adenovirus expressing the promoter for a downstream calcineurin effector, nuclear factor of activated T-cells (NFAT). The bile acid taurolithocholic acid-3-sulfate (TLCS) was primarily used to examine bile acid responses. TLCS caused calcineurin activation only at concentrations that cause acinar cell injury. The activation of calcineurin by TLCS was abolished by chelating intracellular Ca(2+). Pretreatment with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (acetoxymethyl ester) (BAPTA-AM) or the three specific calcineurin inhibitors FK506, cyclosporine A, or calcineurin inhibitory peptide prevented bile acid-induced acinar cell injury as measured by lactate dehydrogenase leakage and propidium iodide uptake. The calcineurin inhibitors reduced the intra-acinar activation of chymotrypsinogen within 30 min of TLCS administration, and they also prevented NF-κB activation. In vivo, mice that received FK506 or were deficient in the calcineurin isoform Aß (CnAß) subunit had reduced pancreatitis severity after infusion of TLCS or taurocholic acid into the pancreatic duct. In summary, we demonstrate that acinar cell calcineurin is activated in response to Ca(2+) generated by bile acid exposure, bile acid-induced pancreatic injury is dependent on calcineurin activation, and calcineurin inhibitors may provide an adjunctive therapy for biliary pancreatitis.


Assuntos
Células Acinares/citologia , Ácidos e Sais Biliares/química , Calcineurina/metabolismo , Cálcio/química , Citosol/metabolismo , Pâncreas/metabolismo , Pancreatite/metabolismo , Células Acinares/metabolismo , Animais , Cálcio/metabolismo , Quimotripsina/química , Ácido Egtázico/análogos & derivados , Ácido Egtázico/química , L-Lactato Desidrogenase/metabolismo , Camundongos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Isoformas de Proteínas , Tacrolimo/farmacologia , Ácido Taurolitocólico/análogos & derivados , Ácido Taurolitocólico/química , Fatores de Tempo
15.
J Hepatol ; 60(1): 160-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23978715

RESUMO

BACKGROUND & AIMS: Oltipraz (4-methyl-5(pyrazinyl-2)-1-2-dithiole-3-thione), a promising cancer preventive agent, has an antioxidative activity and ability to enhance glutathione biosynthesis, phase II detoxification enzymes and multidrug resistance-associated protein-mediated efflux transporters. Oltipraz can protect against hepatotoxicity caused by carbon tetrachloride, acetaminophen and alpha-naphthylisothiocyanate. Whether oltipraz has hepato-protective effects on obstructive cholestasis is unknown. METHODS: We administered oltipraz to mice for 5 days prior to bile duct ligation (BDL) for 3 days. Liver histology, liver function markers, bile flow rates and hepatic expression of profibrogenic genes were evaluated. RESULTS: Mice pretreated with oltipraz prior to BDL demonstrated higher levels of serum aminotransferases and more severe liver damage than in control mice. Higher bile flow and glutathione secretion rates were observed in unoperated mice treated with oltipraz than in control mice, suggesting that liver necrosis in oltipraz-treated BDL mice may be related partially to increased bile-acid independent flow and biliary pressure. Oltipraz treatment in BDL mice enhanced α-smooth muscle actin expression, consistent with activation of hepatic stellate cells and portal fibroblasts. Matrix metalloproteinases (Mmp) 9 and 13 and tissue inhibitors of metalloproteinases (Timp) 1 and 2 levels were increased in the oltipraz-treated BDL group, suggesting that the secondary phase of liver injury induced by oltipraz might be due to excessive Mmp and Timp secretions, which induce remodeling of the extracellular matrix. CONCLUSIONS: Oltipraz treatment exacerbates the severity of liver injury following BDL and should be avoided as therapy for extrahepatic cholestatic disorders due to bile duct obstruction.


Assuntos
Colestase Extra-Hepática/tratamento farmacológico , Pirazinas/toxicidade , Proteínas Angiogênicas/genética , Animais , Bile/efeitos dos fármacos , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Ductos Biliares/cirurgia , Glutationa/metabolismo , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Fator 2 Relacionado a NF-E2/fisiologia , Tionas , Tiofenos , Fator de Crescimento Transformador beta/fisiologia
16.
Food Chem ; 452: 139582, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754170

RESUMO

Pumpkin seeds represent a valuable source of plant protein and can be utilized in the production of plant-based milks. This study aims to investigate the effects of different pretreatment techniques on the stability of Pumpkin Seed Milk (PSM) and explore potential mechanisms. Raw pumpkin seeds underwent pretreatment through roasting, microwaving, and steaming to prepare PSM. Physiochemical attributes such as composition, storage stability, and particle size of PSM were evaluated. Results indicate that stability significantly improved at roasting temperatures of 160 °C, with the smallest particle size (305 ± 40 nm) and highest stability coefficient (0.710 ± 0.002) observed. Nutrient content in PSM remained largely unaffected at 160 °C. Protein oxidation levels, infrared, and fluorescence spectra analysis revealed that higher temperatures exacerbated the oxidation of pumpkin seed emulsion. Overall, roasting raw pumpkin seeds at 160 °C is suggested to enhance PSM quality while preserving nutrient content.


Assuntos
Cucurbita , Temperatura Alta , Sementes , Cucurbita/química , Sementes/química , Tamanho da Partícula , Proteínas de Plantas/química , Oxirredução , Culinária , Manipulação de Alimentos
17.
Anat Rec (Hoboken) ; 307(2): 372-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37475155

RESUMO

Inflammatory injury following ischemia-reperfusion (I/R) severely limits the efficacy of stroke treatment. Edaravone dexborneol (C.EDA) has been shown to reduce inflammation following a cerebral hemorrhage. However, the precise anti-inflammatory mechanism of C.EDA is unknown. In this study, we investigated whether C.EDA provides neuroprotection after I/R in rats, as well as the potential mechanisms involved. A middle cerebral artery occlusion/reperfusion (I/R) model was created using Sprague-Dawley rats. The blood flow of the central cerebral artery was monitored by a laser speckle imaging system. The neurological score was used to assess behavioral improvement. Cerebral infarction volume was measured by TTC staining. And the integrity of the blood-brain barrier was detected by Evan's blue staining. The expression of the nuclear factor kappa-B (NF-κB)/ the NOD-like receptor protein (NLRP3) inflammasome signal pathway and microglia polarization were detected by immunofluorescence and Western blotting. The cerebral blood flow ratio indicates that the cerebral I/R model was successfully established. After reperfusion for 72 h, the improvement of neurological scores, infarct volume reduction, and integrity of the blood-brain barrier was observed in I/R rats with C.EDA treatment. Meanwhile, the immunofluorescence result showed that the expression of iNOS, NLRP3, and NF-κB protein was decreased and the level of Arg1 was increased. Western blot analysis showed that the expression of NF-κB/NLRP3 signal pathway-related protein was decreased. In conclusion, this study indicates that C.EDA alleviates I/R injury by blocking the activation of the NLRP3 inflammasome and regulating the polarization of M1/M2 microglia via the NF-κB signal pathway.


Assuntos
NF-kappa B , Traumatismo por Reperfusão , Ratos , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Edaravone/farmacologia , Ratos Sprague-Dawley , Proteínas NLR , Transdução de Sinais/fisiologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo
18.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559100

RESUMO

MYC-driven medulloblastoma (MB) is a highly aggressive cancer type with poor prognosis and limited treatment options. Through CRISPR-Cas9 screening across MB cell lines, we identified the Mediator-associated kinase CDK8 as the top dependence for MYC-driven MB. Loss of CDK8 markedly reduces MYC expression and impedes MB growth. Mechanistically, we demonstrate that CDK8 depletion suppresses ribosome biogenesis and mRNA translation. CDK8 regulates occupancy of phospho-Polymerase II at specific chromatin loci facilitating an epigenetic alteration that promotes transcriptional regulation of ribosome biogenesis. Additionally, CDK8-mediated phosphorylation of 4EBP1 plays a crucial role in initiating eIF4E-dependent translation. Targeting CDK8 effectively suppresses cancer stem and progenitor cells, characterized by increased ribosome biogenesis activity. We also report the synergistic inhibition of CDK8 and mTOR in vivo and in vitro . Overall, our findings establish a connection between transcription and translation regulation, suggesting a promising therapeutic approach targets multiple points in the protein synthesis network for MYC-driven MB.

19.
Transplant Direct ; 10(6): e1623, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757052

RESUMO

Background: Vascularized composite allograft transplantation is a treatment option for complex tissue injuries; however, ischemia reperfusion injury and high acute rejection rates remain a challenge. Hypothermic machine perfusion using acellular storage perfusate is a potential solution. This study evaluated the University of Wisconsin Kidney Preservation Solution-1 (KPS-1) compared with normal saline (NS) for preservation of donor rat hindlimbs subjected to 24 h of ex vivo perfusion cold storage. Methods: Hindlimbs were subjected to 24-h perfusion cold storage with heparinized KPS-1 (n = 6) or heparinized NS (n = 6). Flow, resistance, and pH were measured continuously. At the end of the 24-h period, tissue was collected for histological analysis of edema and apoptosis. Results: KPS-1 perfused limbs showed significantly less edema than the NS group, as evidenced by lower limb weight gain (P < 0.001) and less interfascicular space (P < 0.001). KPS-perfused muscle had significantly less cell death than NS-perfused muscle based on terminal deoxynucleotidyl transferase dUTP nick-end labeling (P < 0.001) and cleaved caspase-3 staining (P = 0.045). During hypothermic machine perfusion, a significant decrease in pH over time was detected in both groups, with a significantly greater decline in pH in the KPS-1 group than in the NS group. There were no significant differences overall and over time in flow rate or vascular resistance between the KPS and NS groups. Conclusions: Perfusion with KPS-1 can successfully extend vascularized composite allograft perfusion cold storage for 24 h in a rat hindlimb model without significant edema or cell death.

20.
Neurochem Int ; 177: 105747, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657682

RESUMO

Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , AVC Isquêmico , Humanos , AVC Isquêmico/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Transdução de Sinais/fisiologia , Estresse Oxidativo/fisiologia , Isquemia Encefálica/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa