Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703351

RESUMO

The Brachypodium genus is an informative model system for studying grass karyotype organization. Previous studies of a limited number of species and reference chromosomes have not provided a comprehensive picture of the enigmatic phylogenetic relationships in the genus. Comparative chromosome barcoding, which enables the reconstruction of the evolutionary history of individual chromosomes and their segments, allowed us to infer the relationships between putative ancestral karyotypes of extinct species and extant karyotypes of current species. We used over 80 chromosome-specific BAC (bacterial artificial chromosome) clones derived from five reference chromosomes of B. distachyon as probes against the karyotypes of twelve accessions representing five diploid and polyploid Brachypodium perennials. The results showed that descending dysploidy is common in Brachypodium and occurs primarily via nested chromosome fusions. Brachypodium distachyon was rejected as a putative ancestor for allotetraploid perennials and B. stacei for B. mexicanum. We propose two alternative models of perennial polyploid evolution involving either the incorporation of a putative x = 5 ancestral karyotype with different descending dysploidy patterns compared to B. distachyon chromosomes or hybridization of two x = 9 ancestors followed by genome doubling and descending dysploidy. Details of the karyotype structure and evolution in several Brachypodium perennials are revealed for the first time.


Assuntos
Brachypodium/genética , Cromossomos de Plantas/genética , Código de Barras de DNA Taxonômico , Evolução Molecular , Cariótipo , Poliploidia
3.
Ann Bot ; 122(3): 445-459, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-29893795

RESUMO

Background and Aims: The Brachypodium genus represents a useful model system to study grass genome organization. Palaeogenomic analyses (e.g. Murat F, Armero A, Pont C, Klopp C, Salse J. 2017. Reconstructing the genome of the most recent common ancestor of flowering plants. Nature Genetics49: 490-496) have identified polyploidization and dysploidy as the prime mechanisms driving the diversity of plant karyotypes and nested chromosome fusions (NCFs) crucial for shaping grass chromosomes. This study compares the karyotype structure and evolution in B. distachyon (genome Bd), B. stacei (genome Bs) and in their putative allotetraploid B. hybridum (genomes BdBs). Methods: Brachypodium chromosomes were measured and identified using multicolour fluorescence in situ hybridization (mcFISH). For higher resolution, comparative chromosome barcoding was developed using sets of low-repeat, physically mapped B. distachyon-derived bacterial artificial chromosome (BAC) clones. Key Results: All species had rather small chromosomes, and essentially all in the Bs genome were morphometrically indistinguishable. Seven BACs combined with two rDNA-based probes provided unambiguous and reproducible chromosome discrimination. Comparative chromosome barcoding revealed NCFs that contributed to the reduction in the x = 12 chromosome number that has been suggested for the intermediate ancestral grass karyotype. Chromosome Bd3 derives from two NCFs of three ancestral chromosomes (Os2, Os8, Os10). Chromosome Bs6 shows an ancient Os8/Os10 NCF, whilst Bs4 represents Os2 only. Chromosome Bd4 originated from a descending dysploidy that involves two NCFs of Os12, Os9 and Os11. The specific distribution of BACs along Bs9 and Bs5, in both B. stacei and B. hybridum, suggests a Bs genome-specific Robertsonian rearrangement. Conclusions: mcFISH-based karyotyping identifies all chromosomes in Brachypodium annuals. Comparative chromosome barcoding reveals rearrangements responsible for the diverse organization of Bd and Bs genomes and provides new data regarding karyotype evolution since the split of the two diploids. The fact that no chromosome rearrangements were observed in B. hybridum compared with the karyotypes of its phylogenetic ancestors suggests prolonged genome stasis after the formation of the allotetraploid.


Assuntos
Brachypodium/genética , Cromossomos de Plantas/genética , Rearranjo Gênico , Genoma de Planta/genética , DNA Ribossômico/genética , Diploide , Hibridização in Situ Fluorescente , Cariótipo , Cariotipagem , Filogenia , Mapeamento Físico do Cromossomo
4.
Int J Mol Sci ; 19(10)2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257527

RESUMO

Successful germination and seedling development are crucial steps in the growth of a new plant. In this study, we investigated the course of the cell cycle during germination in relation to grain hydration in the model grass Brachypodium distachyon (Brachypodium) for the first time. Flow cytometry was performed to monitor the cell cycle progression during germination and to estimate DNA content in embryo tissues. The analyses of whole zygotic embryos revealed that the relative DNA content was 2C, 4C, 8C, and 16C. Endoreplicated nuclei were detected in the scutellum and coleorhiza cells, whereas the rest of the embryo tissues only had nuclei with a 2C and 4C DNA content. This study was accompanied by a spatiotemporal profile analysis of the DNA synthetic activity in the organs of Brachypodium embryos during germination using EdU labelling. Upon imbibition, nuclear DNA replication was initiated in the radicle within 11 h and subsequently spread towards the plumule. The first EdU-labelled prophases were observed after 14 h of imbibition. Analysis of selected genes that are involved in the regulation of the cell cycle, such as those encoding cyclin-dependent kinases and cyclins, demonstrated an increase in their expression profiles.


Assuntos
Brachypodium/crescimento & desenvolvimento , Germinação , Plântula/crescimento & desenvolvimento , Brachypodium/citologia , Brachypodium/embriologia , Ciclo Celular , DNA de Plantas/análise , DNA de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Plântula/citologia , Plântula/embriologia
5.
Int J Mol Sci ; 19(3)2018 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-29510511

RESUMO

The plant cell wall shows a great diversity regarding its chemical composition, which may vary significantly even during different developmental stages. In this study, we analysed the distribution of several cell wall epitopes in embryos of Brachypodium distachyon (Brachypodium). We also described the variations in the nucleus shape and the number of nucleoli that occurred in some embryo cells. The use of transmission electron microscopy, and histological and immunolocalisation techniques permitted the distribution of selected arabinogalactan proteins, extensins, pectins, and hemicelluloses on the embryo surface, internal cell compartments, and in the context of the cell wall ultrastructure to be demonstrated. We revealed that the majority of arabinogalactan proteins and extensins were distributed on the cell surface and that pectins were the main component of the seed coat and other parts, such as the mesocotyl cell walls and the radicula. Hemicelluloses were localised in the cell wall and outside of the radicula protodermis, respectively. The specific arrangement of those components may indicate their significance during embryo development and seed germination, thus suggesting the importance of their protective functions. Despite the differences in the cell wall composition, we found that some of the antibodies can be used as markers to identify specific cells and the parts of the developing Brachypodium embryo.


Assuntos
Brachypodium/imunologia , Parede Celular/imunologia , Epitopos/imunologia , Sementes/imunologia , Brachypodium/crescimento & desenvolvimento , Brachypodium/ultraestrutura , Núcleo Celular/imunologia , Núcleo Celular/ultraestrutura , Parede Celular/ultraestrutura , Citoplasma/imunologia , Citoplasma/ultraestrutura , Lectinas de Plantas/imunologia , Sementes/ultraestrutura
6.
Genetics ; 223(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36218464

RESUMO

The "genomic shock" hypothesis posits that unusual challenges to genome integrity such as whole genome duplication may induce chaotic genome restructuring. Decades of research on polyploid genomes have revealed that this is often, but not always the case. While some polyploids show major chromosomal rearrangements and derepression of transposable elements in the immediate aftermath of whole genome duplication, others do not. Nonetheless, all polyploids show gradual diploidization over evolutionary time. To evaluate these hypotheses, we produced a chromosome-scale reference genome for the natural allotetraploid grass Brachypodium hybridum, accession "Bhyb26." We compared 2 independently derived accessions of B. hybridum and their deeply diverged diploid progenitor species Brachypodium stacei and Brachypodium distachyon. The 2 B. hybridum lineages provide a natural timecourse in genome evolution because one formed 1.4 million years ago, and the other formed 140 thousand years ago. The genome of the older lineage reveals signs of gradual post-whole genome duplication genome evolution including minor gene loss and genome rearrangement that are missing from the younger lineage. In neither B. hybridum lineage do we find signs of homeologous recombination or pronounced transposable element activation, though we find evidence supporting steady post-whole genome duplication transposable element activity in the older lineage. Gene loss in the older lineage was slightly biased toward 1 subgenome, but genome dominance was not observed at the transcriptomic level. We propose that relaxed selection, rather than an abrupt genomic shock, drives evolutionary novelty in B. hybridum, and that the progenitor species' similarity in transposable element load may account for the subtlety of the observed genome dominance.


Assuntos
Brachypodium , Brachypodium/genética , Elementos de DNA Transponíveis , Diploide , Genômica , Poliploidia , Genoma de Planta , Evolução Molecular
7.
Nat Commun ; 11(1): 3670, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728126

RESUMO

Our understanding of polyploid genome evolution is constrained because we cannot know the exact founders of a particular polyploid. To differentiate between founder effects and post polyploidization evolution, we use a pan-genomic approach to study the allotetraploid Brachypodium hybridum and its diploid progenitors. Comparative analysis suggests that most B. hybridum whole gene presence/absence variation is part of the standing variation in its diploid progenitors. Analysis of nuclear single nucleotide variants, plastomes and k-mers associated with retrotransposons reveals two independent origins for B. hybridum, ~1.4 and ~0.14 million years ago. Examination of gene expression in the younger B. hybridum lineage reveals no bias in overall subgenome expression. Our results are consistent with a gradual accumulation of genomic changes after polyploidization and a lack of subgenome expression dominance. Significantly, if we did not use a pan-genomic approach, we would grossly overestimate the number of genomic changes attributable to post polyploidization evolution.


Assuntos
Brachypodium/genética , Diploide , Evolução Molecular , Genoma de Planta , Poliploidia , Cromossomos de Plantas/genética , Genoma de Cloroplastos , Genômica , Hibridização Genética , Filogenia , Polimorfismo de Nucleotídeo Único , Retroelementos/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa