Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 238: 109741, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056552

RESUMO

A variety of techniques exist to investigate retinal and choroidal vascular changes in experimental mouse models of human ocular diseases. While all have specific advantages, a method for evaluating the choroidal vasculature in pigmented mouse eyes has been more challenging especially for whole mount visualization and morphometric analysis. Here we report a simple, reliable technique involving bleaching pigment prior to immunostaining the vasculature in whole mounts of pigmented mouse choroids. Eyes from healthy adult pigmented C57BL/6J mice were used to establish the methodology. The retina and anterior segment were separated from the choroid. The choroid with retinal pigment epithelial cells (RPE) and sclera was soaked in 1% ethylenediaminetetraacetic acid (EDTA) to remove the RPE. Tissues were fixed in 2% paraformaldehyde (PFA) in phosphate-buffered saline (PBS). Choroids were subjected to melanin bleaching with 10% hydrogen peroxide (H2O2) at 55 °C for 90 min, washed in PBS and then immunostained with anti-podocalyxin antibody to label vascular endothelium followed by Cy3-AffiniPure donkey anti-goat IgG at 4 °C overnight. Images of immunostained bleached choroids were captured using a Zeiss 710 confocal microscope. In addition to control eyes, this method was used to analyze the choroids from subretinal sodium iodate (NaIO3) RPE atrophy and laser-induced choroidal neovascularization (CNV) mouse models. The H2O2 pretreatment effectively bleached the melanin, resulting in a transparent choroid. Immunolabeling with podocalyxin antibody following bleaching provided excellent visualization of choroidal vasculature in the flat perspective. In control choroids, the choriocapillaris (CC) displayed different anatomical patterns in peripapillary (PP), mid peripheral (MP) and far peripheral (FP) choroid. Morphometric analysis of the vascular area (VA) revealed that the CC was most dense in the PP region (87.4 ± 4.3% VA) and least dense in FP (79.9 ± 6.7% VA). CC diameters also varied depending on location from 11.4 ± 1.97 mm in PP to 15.1 ± 3.15 mm in FP. In the NaIO3-injected eyes, CC density was significantly reduced in the RPE atrophic regions (50.7 ± 5.8% VA in PP and 45.8 ± 6.17% VA in MP) compared to the far peripheral non-atrophic regions (82.8 ± 3.8% VA). CC diameters were significantly reduced in atrophic regions (6.35 ± 1.02 mm in PP and 6.5 ± 1.2 mm in MP) compared to non-atrophic regions (14.16 ± 2.12 mm). In the laser-induced CNV model, CNV area was 0.26 ± 0.09 mm2 and luminal diameters of CNV vessels were 4.7 ± 0.9 mm. Immunostaining on bleached choroids with anti-podocalyxin antibody provides a simple and reliable tool for visualizing normal and pathologic choroidal vasculature in pigmented mouse eyes for quantitative morphometric analysis. This method will be beneficial for examining and evaluating the effects of various treatment modalities on the choroidal vasculature in mouse models of ocular diseases such as age-related macular degeneration, and degenerative genetic diseases.


Assuntos
Neovascularização de Coroide , Peróxido de Hidrogênio , Adulto , Humanos , Animais , Camundongos , Melaninas , Camundongos Endogâmicos C57BL , Corioide/irrigação sanguínea , Retina/patologia , Neovascularização de Coroide/patologia
2.
Exp Eye Res ; 203: 108391, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33307075

RESUMO

Oxidative stress, inflammation and neovascularization are the key pathological events that are implicated in human age-related macular degeneration (AMD). There are a limited number of animal models available for evaluating and developing new therapies. Most models represent late exudative or neovascular AMD (nAMD) but there is a relative paucity of models that mimic early events in AMD. The purpose of this study is to characterize the evolution of oxidative stress, inflammation, retinal degeneration and neovascularization in a rat model of AMD, created by subretinal injection of human lipid hydroperoxide (HpODE) that found in the sub-macular region in aged and AMD patients. Subretinal HpODE induced retinal pigment epithelium (RPE) and retinal degeneration resulting in loss of RPE cells, photoreceptors and retinal thinning. RPE degeneration and atrophy were detected by day 5, followed by neural tissue degeneration at day 12 with robust TUNEL positive cells. Western blot analysis confirmed an increase in pro-apoptotic Bak protein at day 12 in retinal tissues. Oxidative damage biomarkers (4-hydroxynonenal, malondialdehyde, 8-hydroxy-2'-deoxyguanosine, and nitrotyrosine) increased in retinal tissue from days 5-12. Müller glial activation was observed in the HpODE injected area at day 5 followed by its remodeling and migration in the outer retina by day 20. RT-qPCR analysis further indicated upregulation of pro-inflammatory genes (TNF-α, IL-1ß and IL-6) both in retinal and RPE/choroidal tissue as early as day 2 and persisted until day 12. Upregulation of oxidative stress markers such as NADPH oxidase (NOX and DOUX family) was detected early in retinal tissue by day 2 followed by its upregulation in choroidal tissue at day 5. Neovascularization was demonstrated from day 12 to day 20 post HpODE injection in choroidal tissue. The results from this study indicate that subretinal HpODE induces advanced AMD phenotypes comprising many aspects of both dry/early and late) and neovascular/late AMD as observed in humans. Within 3 weeks via oxidative damage, upregulation of reactive oxygen species and pro-inflammatory genes, pro-apoptotic Bak and pro-angiogenic VEGF upregulation occurs leading to CNV formation. This experimental model of subretinal HpODE is an appropriate model for the study of AMD and provides an important platform for translational and basic research in developing new therapies particularly for early/dry AMD where currently no viable therapies are available.


Assuntos
Neovascularização de Coroide/etiologia , Atrofia Geográfica/induzido quimicamente , Inflamação/etiologia , Peróxidos Lipídicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Neovascularização Retiniana/etiologia , Degeneração Macular Exsudativa/induzido quimicamente , Animais , Biomarcadores/metabolismo , Western Blotting , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Atrofia Geográfica/patologia , Marcação In Situ das Extremidades Cortadas , Inflamação/metabolismo , Inflamação/patologia , Microscopia Confocal , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Degeneração Macular Exsudativa/patologia
3.
FASEB J ; 34(8): 10117-10131, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32525594

RESUMO

Mast cells (MCs) are the initial responders of innate immunity and their degranulation contribute to various etiologies. While the abundance of MCs in the choroid implies their fundamental importance in the eye, little is known about the significance of MCs and their degranulation in choroid. The cause of geographic atrophy (GA), a progressive dry form of age-related macular degeneration is elusive and there is currently no therapy for this blinding disorder. Here we demonstrate in both human GA and a rat model for GA, that MC degranulation and MC-derived tryptase are central to disease progression. Retinal pigment epithelium degeneration followed by retinal and choroidal thinning, characteristic phenotypes of GA, were driven by continuous choroidal MC stimulation and activation in a slow release fashion in the rat. Genetic manipulation of MCs, pharmacological intervention targeting MC degranulation with ketotifen fumarate or inhibition of MC-derived tryptase with APC 366 prevented all of GA-like phenotypes following MC degranulation in the rat model. Our results demonstrate the fundamental role of choroidal MC involvement in GA disease etiology, and will provide new opportunities for understanding GA pathology and identifying novel therapies targeting MCs.


Assuntos
Atrofia Geográfica/patologia , Mastócitos/patologia , Animais , Linhagem Celular , Corioide/metabolismo , Corioide/patologia , Modelos Animais de Doenças , Atrofia Geográfica/metabolismo , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Mastócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Triptases/metabolismo
4.
Adv Exp Med Biol ; 1256: 89-119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847999

RESUMO

A healthy choroidal vasculature is necessary to support the retinal pigment epithelium (RPE) and photoreceptors, because there is a mutualistic symbiotic relationship between the components of the photoreceptor/retinal pigment epithelium (RPE)/Bruch's membrane (BrMb)/choriocapillaris (CC) complex. This relationship is compromised in age-related macular degeneration (AMD) by the dysfunction or death of the choroidal vasculature. This chapter will provide a basic description of the human Bruch's membrane and choroidal anatomy and physiology and how they change in AMD.The choriocapillaris is the lobular, fenestrated capillary system of choroid. It lies immediately posterior to the pentalaminar Bruch's membrane (BrMb). The blood supply for this system is the intermediate blood vessels of Sattler's layer and the large blood vessels in Haller's layer.In geographic atrophy (GA), an advanced form of dry AMD, large confluent drusen form on BrMb, and hyperpigmentation (presumably dysfunction in RPE) appears to be the initial insult. The resorption of these drusen and loss of RPE (hypopigmentation) can be predictive for progression of GA. The death and dysfunction of CC and photoreceptors appear to be secondary events to loss in RPE. The loss of choroidal vasculature may be the initial insult in neovascular AMD (nAMD). We have observed a loss of CC with an intact RPE monolayer in nAMD, by making RPE hypoxic. These hypoxic cells then produce angiogenic substances like vascular endothelial growth factor (VEGF), which stimulate growth of new vessels from CC, resulting in choroidal neovascularization (CNV). Reduction in blood supply to the CC, often stenosis of intermediate and large blood vessels, is associated with CC loss.The polymorphisms in the complement system components are associated with AMD. In addition, the environment of the CC, basement membrane and intercapillary septa, is a proinflammatory milieu with accumulation of proinflammatory molecules like CRP and complement components during AMD. In this toxic milieu, CC die or become dysfunctional even early in AMD. The loss of CC might be a stimulus for drusen formation since the disposal system for retinal debris and exocytosed material from RPE would be limited. Ultimately, the photoreceptors die of lack of nutrients, leakage of serum components from the neovascularization, and scar formation.Therefore, the mutualistic symbiotic relationship of the photoreceptor/RPE/BrMb/CC complex is lost in both forms of AMD. Loss of this functionally integrated relationship results in death and dysfunction of all of the components in the complex.


Assuntos
Lâmina Basilar da Corioide , Degeneração Macular Exsudativa , Inibidores da Angiogênese , Corioide , Humanos , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual
5.
Exp Eye Res ; 192: 107939, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31987759

RESUMO

Loss of choriocapillaris (CC) in advanced age-related macular degeneration (AMD) is well documented but changes in early AMD have not been quantified. Postmortem eyes from donors with clinically documented early AMD were examined in choroidal whole mounts to determine the area, pattern, and severity of CC loss. Choroids from postmortem human eyes without AMD (n = 7; mean age = 86.1) and from eyes with a Grade 2 clinical classification of early AMD (n = 7; mean age = 87) were immunolabeled with Ulex europaeus agglutinin (UEA) lectin-FITC to stain blood vessels. Whole mounts were imaged using confocal microscopy and image analysis was performed to determine the area of vascular changes and density of vasculature (percent vascular area, %VA). All areas evaluated had a complete RPE monolayer upon gross examination. In age-matched control eyes, the CC had broad lumens and a homogenous pattern of freely interconnecting capillaries. The mean %VA ± standard deviation in submacula of control subjects was 78.1 ± 3.25%. In eyes with early AMD, there was a significant decrease in mean %VA to 60.1 ± 10.4% (p < 0.0001). The paramacular %VA was not significantly different in eyes with or without AMD. The area of submacular choroid affected by CC dropout was 0.04 ± 0.09 mm2 in control eyes. In eyes with early AMD, the mean area affected by CC dropout was significantly increased (10.4 ± 6.1 mm2; p < 0.001). In some cases, incipient neovascular buds were observed at the border of regions with CC dropout in early AMD choroids. In conclusion, UEA lectin-labeled choroidal whole mounts from donors with clinically documented early AMD has provided a unique opportunity to examine regional changes in vascular pathology associated with choriocapillaris. The study demonstrated attenuation of submacular CC in early AMD subjects but no vascular pathology was observed outside the submacular region. While the affected area in some eyes was quite extensive histologically, these changes may not be detectable clinically using standard in vivo imaging.


Assuntos
Corioide/irrigação sanguínea , Neovascularização de Coroide/patologia , Artérias Ciliares/patologia , Degeneração Macular/patologia , Idoso , Idoso de 80 Anos ou mais , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Lectinas de Plantas/metabolismo , Drusas Retinianas/patologia , Coloração e Rotulagem , Doadores de Tecidos , Acuidade Visual/fisiologia
6.
J Pathol ; 241(5): 583-588, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28026019

RESUMO

Age-related macular degeneration (AMD) is a complex and progressive degenerative eye disease resulting in severe loss of central vision. Recent evidence indicates that immune system dysregulation could contribute to the development of AMD. We hypothesize that defective lysosome-mediated clearance causes accumulation of waste products in the retinal pigmented epithelium (RPE), activating the immune system and leading to retinal tissue injury and AMD. We have generated unique genetically engineered mice in which lysosome-mediated clearance (both by phagocytosis and autophagy) in RPE cells is compromised, causing the development of features of early AMD. Our recent data indicate a link between lipocalin-2 (LCN-2) and the inflammatory responses induced in this mouse model. We show that nuclear factor-κB (NF-κB) and STAT-1 may function as a complex in our animal model system, together controlling the upregulation of LCN-2 expression in the retina and stimulating an inflammatory response. This study revealed increased infiltration of LCN-2-positive neutrophils in the choroid and retina of early AMD patients as compared with age-matched controls. Our results demonstrate that, both in our animal model and in human AMD, the AKT2-NF-κB-LCN-2 signalling axis is involved in activating the inflammatory response, making this pathway a potential target for AMD treatment. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Lipocalina-2/genética , Lisossomos/imunologia , Degeneração Macular/genética , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Fatores Etários , Animais , Autofagia , Corioide/imunologia , Corioide/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação , Lipocalina-2/metabolismo , Lisossomos/metabolismo , Degeneração Macular/imunologia , Degeneração Macular/patologia , Camundongos , NF-kappa B/metabolismo , Neutrófilos/imunologia , Fagocitose , Proteínas Proto-Oncogênicas c-akt/metabolismo , Retina/imunologia , Retina/lesões , Retina/metabolismo , Epitélio Pigmentado da Retina/imunologia , Epitélio Pigmentado da Retina/metabolismo , Regulação para Cima
7.
Retina ; 38(7): 1289-1300, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29059100

RESUMO

PURPOSE: To present a postprocessing approach in optical coherence tomography angiography (OCTA) to facilitate the visualization and interpretation of lesions in age-related macular degeneration with coexisting atrophy and choroidal neovascularization (CNV). METHODS: This retrospective study included 32 eyes of 26 patients with atrophy and treated CNV and 8 eyes with treatment-naive geographic atrophy. En face optical coherence tomography slabs highlighting atrophy were pseudocolored and merged with the corresponding OCTA. Cross-sectional optical coherence tomography and postprocessed OCTA were analyzed to identify CNV and normal choroidal vessels in relationship to the atrophy. We correlate the OCTA findings with those in a donor eye with treatment-naive geographic atrophy studied with transmission electronic microscopy. RESULTS: Medium-sized choroidal vessels were displaced anteriorly in areas of atrophy in all 40 eyes (100%), visualized in the choriocapillaris slab in all eyes, and in the outer retinal slab in 30 of 40 eyes (75.0%). Cross-sectional OCTA was used to confirm the presence of CNV. Postprocessing successfully highlighted the CNV and distinguished it from choroidal vessels in atrophy. Donor eye transmission electronic microscopy confirmed the anterior displacement of medium-sized choroidal vessels in geographic atrophy. CONCLUSION: The anterior displacement of larger choroidal vessels in atrophy requires clinician vigilance to avoid misinterpreting these vessels as CNV on en face OCTA. Our proposed postprocessing approach offers a potential solution to facilitate the interpretation of en face OCTA in these cases. In the absence of other tools, clinicians are encouraged to rely on the location of flow relative to Bruch membrane on cross-sectional OCTA flow images.


Assuntos
Corioide/irrigação sanguínea , Neovascularização de Coroide/diagnóstico , Angiofluoresceinografia/métodos , Tomografia de Coerência Óptica/métodos , Degeneração Macular Exsudativa/patologia , Idoso , Idoso de 80 Anos ou mais , Atrofia/diagnóstico , Lâmina Basilar da Corioide/ultraestrutura , Corioide/ultraestrutura , Diagnóstico Diferencial , Feminino , Seguimentos , Fundo de Olho , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Estudos Retrospectivos
8.
Proc Natl Acad Sci U S A ; 112(23): E3030-9, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26039997

RESUMO

Diabetic eye disease is the most common cause of severe vision loss in the working-age population in the developed world, and proliferative diabetic retinopathy (PDR) is its most vision-threatening sequela. In PDR, retinal ischemia leads to the up-regulation of angiogenic factors that promote neovascularization. Therapies targeting vascular endothelial growth factor (VEGF) delay the development of neovascularization in some, but not all, diabetic patients, implicating additional factor(s) in PDR pathogenesis. Here we demonstrate that the angiogenic potential of aqueous fluid from PDR patients is independent of VEGF concentration, providing an opportunity to evaluate the contribution of other angiogenic factor(s) to PDR development. We identify angiopoietin-like 4 (ANGPTL4) as a potent angiogenic factor whose expression is up-regulated in hypoxic retinal Müller cells in vitro and the ischemic retina in vivo. Expression of ANGPTL4 was increased in the aqueous and vitreous of PDR patients, independent of VEGF levels, correlated with the presence of diabetic eye disease, and localized to areas of retinal neovascularization. Inhibition of ANGPTL4 expression reduced the angiogenic potential of hypoxic Müller cells; this effect was additive with inhibition of VEGF expression. An ANGPTL4 neutralizing antibody inhibited the angiogenic effect of aqueous fluid from PDR patients, including samples from patients with low VEGF levels or receiving anti-VEGF therapy. Collectively, our results suggest that targeting both ANGPTL4 and VEGF may be necessary for effective treatment or prevention of PDR and provide the foundation for studies evaluating aqueous ANGPTL4 as a biomarker to help guide individualized therapy for diabetic eye disease.


Assuntos
Angiopoietinas/fisiologia , Retinopatia Diabética/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Angiopoietinas/metabolismo , Retinopatia Diabética/metabolismo , Olho/irrigação sanguínea , Olho/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular/sangue
9.
Proc Natl Acad Sci U S A ; 112(35): 10950-5, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26269569

RESUMO

Age-related macular degeneration (AMD) is associated with dysfunction and death of retinal pigment epithelial (RPE) cells. Cell-based approaches using RPE-like cells derived from human pluripotent stem cells (hPSCs) are being developed for AMD treatment. However, most efficient RPE differentiation protocols rely on complex, stepwise treatments and addition of growth factors, whereas small-molecule-only approaches developed to date display reduced yields. To identify new compounds that promote RPE differentiation, we developed and performed a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. Chetomin, an inhibitor of hypoxia-inducible factors, was found to strongly increase RPE differentiation; combination with nicotinamide resulted in conversion of over one-half of the differentiating cells into RPE. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Ensaios de Triagem em Larga Escala , Humanos , Células-Tronco Pluripotentes/citologia , Reação em Cadeia da Polimerase
10.
Exp Eye Res ; 150: 44-61, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26220834

RESUMO

During analysis of glia in wholemount aged human retinas, frequent projections onto the vitreal surface of the inner limiting membrane (ILM) were noted. The present study characterized these preretinal glial structures. The amount of glial cells on the vitreal side of the ILM was compared between eyes with age-related macular degeneration (AMD) and age-matched control eyes. Retinal wholemounts were stained for markers of retinal astrocytes and activated Müller cells (glial fibrillary acidic protein, GFAP), Müller cells (vimentin, glutamine synthetase) and microglia/hyalocytes (IBA-1). Retinal vessels were labeled with UEA lectin. Images were collected using a Zeiss LSM 710 confocal microscope. Retinas were then cryopreserved. Laminin labeling of cryosections determined the location of glial structures in relation to the ILM. All retinas investigated herein had varied amounts of preretinal glia. These glial structures were classified into three groups based on size: sprouts, blooms, and membranes. The simplest of the glial structures observed were focal sprouts of singular GFAP-positive cells or processes on the vitreal surface of the ILM. The intermediate structures observed, glial blooms, were created by multiple cells/processes exiting from a single point and extending along the vitreoretinal surface. The most extensive structures, glial membranes, consisted of compact networks of cells and processes. Preretinal glia were observed in all areas of the retina but they were most prominent over large vessels. While all glial blooms and membranes contained vimentin and GFAP-positive cells, these proteins did not always co-localize. Many areas had no preretinal GFAP but had numerous vimentin only glial sprouts. In double labeled glial sprouts, vimentin staining extended beyond that of GFAP. Hyalocytes and microglia were detected along with glial sprouts, blooms, and membranes. They did not, however, concentrate in the retina below these structures. Cross sectional analysis identified small breaks in the ILM above large retinal vessels through which glial cells exited the retina. Preretinal glial structures of varied sizes are a common occurrence in aged retinas and, in most cases, are subclinical. While all retinal glia are found in blooms, vimentin labeling suggests that Müller cells form the leading edge. All retinas investigated from eyes with active choroidal neovascularization (CNV) had extensive glial membranes on the vitreal surface of the ILM. Although these structures may be benign, they may exert traction on the retina as they spread along the vitreoretinal interface. In cases with CNV, glial cells in the vitreous could bind intravitreally injected anti-vascular endothelial growth factor. These preretinal glial structures indicate the remodeling of both astrocytes and Müller cells in aged retinas, in particular those with advanced AMD.


Assuntos
Envelhecimento , Degeneração Macular/patologia , Neuroglia/patologia , Retina/patologia , Idoso , Idoso de 80 Anos ou mais , Astrócitos/patologia , Humanos , Imuno-Histoquímica , Microscopia Confocal , Pessoa de Meia-Idade
11.
Exp Eye Res ; 144: 46-53, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26321509

RESUMO

The retinal pigmented epithelium (RPE) is critically important to retinal homeostasis, in part due to its very active processes of phagocytosis and autophagy. Both of these processes depend upon the normal functioning of lysosomes, organelles which must fuse with (auto)phagosomes to deliver the hydrolases that effect degradation of cargo. It has become clear that signaling through mTOR complex 1 (mTORC1), is very important in the regulation of lysosomal function. This signaling pathway is becoming a target for therapeutic intervention in diseases, including age-related macular degeneration (AMD), where lysosomal function is defective. In addition, our laboratory has been studying animal models in which the gene (Cryba1) for ßA3/A1-crystallin is deficient. These animals exhibit impaired lysosomal clearance in the RPE and pathological signs that are similar to some of those seen in AMD patients. The data demonstrate that ßA3/A1-crystallin localizes to lysosomes in the RPE and that it is a binding partner of V-ATPase, the proton pump that acidifies the lysosomal lumen. This suggests that ßA3/A1-crystallin may also be a potential target for therapeutic intervention in AMD. In this review, we focus on effector molecules that impact the lysosomal-autophagic pathway in RPE cells.


Assuntos
Autofagia/fisiologia , Lisossomos/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Animais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/fisiologia , Biogênese de Organelas , Serina-Treonina Quinases TOR/fisiologia
12.
Proteomics ; 15(4): 836-40, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25407473

RESUMO

The retina is a delicate tissue that detects light, converts photochemical energy into neural signals, and transmits the signals to the visual cortex of the brain. A detailed protein inventory of the proteome of the normal human eye may provide a foundation for new investigations into both the physiology of the retina and the pathophysiology of retinal diseases. To provide an inventory, proteins were extracted from five retinas of normal eyes and fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed in duplicate using LC-MS/MS on an Orbitrap Elite mass spectrometer. A total of 3436 nonredundant proteins were identified in the human retina, including 20 unambiguous protein isoforms, of which eight have not previously been demonstrated to exist at the protein level. The proteins identified in the retina included most of the enzymes involved in the visual cycle and retinoid metabolism. One hundred and fifty-eight proteins that have been associated with age-related macular degeneration were identified in the retina. The MS proteome database of the human retina may serve as a valuable resource for future investigations of retinal biology and disease. All MS data have been deposited in the ProteomeXchange with identifier PXD001242 (http://proteomecentral.proteomexchange.org/dataset/PXD001242).


Assuntos
Bases de Dados de Proteínas , Proteínas do Olho/química , Proteoma/química , Retina/química , Proteínas do Olho/análise , Proteínas do Olho/classificação , Humanos , Proteoma/análise
13.
Exp Eye Res ; 127: 252-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25149907

RESUMO

The retinas of Alzheimer's disease (AD) patients and transgenic AD animal models display amyloid beta deposits and degeneration of ganglion cells. Little is known, however, about the glial changes in the AD retina. The present study used a triple transgenic mouse model (3xTG-AD), which carries mutated human amyloid precursor protein, tau, and presenilin 1 genes and closely mimics the human brain pathology, to investigate retinal glial changes in AD. AD cognitive symptoms are known to begin in the 3xTG-AD mice at four months of age but plaques and tangles are not seen until six to twelve months. Müller cells in 3xTG-AD animals were GFAP-positive, indicating activation, at the earliest time point investigated, nine months. Astrocyte activation was also suggested in the 3xTG-AD mice by an apparent increase in size and process number. Another glial marker, S100, was expressed by astrocytes in both the non-transgenic (NTG) controls and 3xTG-AD retinas. Labeling was predominantly nuclear in nine month non-transgenic (NTG) control mice but was also seen in the cytoplasm and processes at 18 months of age. Interestingly, the nuclear localization was not as prominent in the 3xTG-AD retina even at nine months with labeling observed in astrocyte processes. The diffusion of S100 suggests the possible secretion of this protein, as is seen in the brain, with age and, more profoundly, associated with AD. Several dense, abnormally shaped, opaque structures were noted in all 3xTG-AD mice investigated. These structures, which were enveloped by GFAP and S100-positive astrocytes and Müller cells, were positive for amyloid beta, suggesting that they are amyloid plaques. Staining control retinas with amyloid showed similar structures in 30% of NTG animals but these were fewer in number and not associated with glial activation. The results herein indicate retinal glia activation in the 3xTG-AD mouse retina.


Assuntos
Doença de Alzheimer/patologia , Astrócitos/patologia , Modelos Animais de Doenças , Células Ependimogliais/patologia , Neurônios Retinianos/citologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Contagem de Células , Células Ependimogliais/metabolismo , Proteína Glial Fibrilar Ácida , Gliose/patologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Presenilina-1/metabolismo , Proteínas S100/metabolismo , Proteínas tau/metabolismo
14.
J Cell Sci ; 124(Pt 4): 523-31, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21266465

RESUMO

Phagocytosis of the shed outer segment discs of photoreceptors is a major function of the retinal pigmented epithelium (RPE). We demonstrate for the first time that ßA3/A1-crystallin, a major structural protein of the ocular lens, is expressed in RPE cells. Further, by utilizing the Nuc1 rat, in which the ßA3/A1-crystallin gene is mutated, we show that this protein is required by RPE cells for proper degradation of outer segment discs that have been internalized in phagosomes. We also demonstrate that in wild-type RPE, ßA3/A1-crystallin is localized to the lysosomes. However, in the Nuc1 RPE, ßA3/A1-crystallin fails to translocate to the lysosomes, perhaps because misfolding of the mutant protein masks sorting signals required for proper trafficking. The digestion of phagocytized outer segments requires a high level of lysosomal enzyme activity, and cathepsin D, the major enzyme responsible for proteolysis of the outer segments, is decreased in mutant RPE cells. Interestingly, our results also indicate a defect in the autophagy process in the Nuc1 RPE, which is probably also linked to impaired lysosomal function, because phagocytosis and autophagy might share common mechanisms in degradation of their targets. ßA3/A1-crystallin is a novel lysosomal protein in RPE, essential for degradation of phagocytosed material.


Assuntos
Cristalinas/genética , Mutação , Fagossomos/genética , Epitélio Pigmentado da Retina/metabolismo , Animais , Cristalinas/metabolismo , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Ratos , Ratos Sprague-Dawley , Epitélio Pigmentado da Retina/ultraestrutura
15.
Dev Dyn ; 241(3): 595-607, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22275161

RESUMO

VEGF(165) b is an anti-angiogenic form of VEGF(165) produced by alternative splicing. The localization of pro-angiogenic VEGF(165) and anti-angiogenic VEGF(165) b was investigated during development of the vasculatures in fetal human eyes from 7 to 21 weeks gestation (WG). The fetal vasculature of vitreous, which includes tunica vasculosa lentis (TVL), had moderate VEGF(165) immunoreactivity at 7WG and very little VEGF(165) b. Both forms were elevated at 12WG. VEGF(165) then decreased around 17WG when the TVL regresses but VEGF(165) b remained elevated. In choroid, VEGF(165) was present in forming choriocapillaris (CC) and retinal pigment epithelium (RPE) at 7WG while VEGF165b was present in CC and mesenchymal precursors within the choroidal stroma. By 21WG, both forms were elevated in RPE and choroidal blood vessels but VEGF(165) b was apical and VEGF(165) basal in RPE. Diffuse VEGF(165) immunoreactivity was prominent in 12WG innermost retina where blood vessels will form while VEGF(165) b was present in most CXCR4(+) progenitors in the inner neuroblastic layer and migrating angioblasts in the putative nerve fiber layer. By 21WG, VEGF(165) was present in nerve fibers and VEGF(165) b in the inner Muller cell process. The localization of VEGF(165) b was distinctly different from VEGF(165) both spatially and temporally and it was often associated with nucleus in progenitors.


Assuntos
Neovascularização Fisiológica , Vasos Retinianos/embriologia , Vasos Retinianos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Corpo Vítreo/irrigação sanguínea , Corpo Vítreo/embriologia , Núcleo Celular/metabolismo , Feminino , Desenvolvimento Fetal , Feto/irrigação sanguínea , Feto/metabolismo , Humanos , Gravidez , Primeiro Trimestre da Gravidez , Retina/embriologia
16.
Invest Ophthalmol Vis Sci ; 64(3): 2, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36862121

RESUMO

Purpose: Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly worldwide. Clinical imaging and histopathologic studies are crucial to understanding disease pathology. This study combined clinical observations of three brothers with geographic atrophy (GA), followed for 20 years, with histopathologic analysis. Methods: For two of the three brothers, clinical images were taken in 2016, 2 years prior to death. Immunohistochemistry, on both flat-mounts and cross sections, histology, and transmission electron microscopy were used to compare the choroid and retina in GA eyes to those of age-matched controls. Results: Ulex europaeus agglutinin (UEA) lectin staining of the choroid demonstrated a significant reduction in the percent vascular area and vessel diameter. In one donor, histopathologic analysis demonstrated two separate areas with choroidal neovascularization (CNV). Reevaluation of swept-source optical coherence tomography angiography (SS-OCTA) images revealed CNV in two of the brothers. UEA lectin also revealed a significant reduction in retinal vasculature in the atrophic area. A subretinal glial membrane, composed of processes positive for glial fibrillary acidic protein and/or vimentin, occupied areas identical to those of retinal pigment epithelium (RPE) and choroidal atrophy in all three AMD donors. SS-OCTA also demonstrated presumed calcific drusen in the two donors imaged in 2016. Immunohistochemical analysis and alizarin red S staining verified calcium within drusen, which was ensheathed by glial processes. Conclusions: This study demonstrates the importance of clinicohistopathologic correlation studies. It emphasizes the need to better understand how the symbiotic relationship between choriocapillaris and RPE, glial response, and calcified drusen impact GA progression.


Assuntos
Neovascularização de Coroide , Atrofia Geográfica , Degeneração Macular , Masculino , Idoso , Humanos , Atrofia Geográfica/diagnóstico , Irmãos , Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina
17.
Exp Eye Res ; 96(1): 147-56, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22200487

RESUMO

Retinal vascular development is a complex process that is not yet fully understood. The majority of research in this area has focused on astrocytes and the template they form in the inner retina, which precedes endothelial cells in the mouse retina. In humans and dogs, however, astrocyte migration follows behind development of blood vessels, suggesting that other cell types may guide this process. One such cell type is the ganglion cell, which differentiates before blood vessel formation and lies adjacent to the primary retinal vascular plexus. The present study investigated the potential role played by ganglion cells in vascular development using Math5(-/-) mice. It has previously been reported that Math5 regulates the differentiation of ganglion cells and Math5(-/-) mice have a 95% reduction in these cells. The development of blood vessels and glia was investigated using Griffonia simplicifolia isolectin B4 labeling and GFAP immunohistochemistry, respectively. JB-4 analysis demonstrated that the hyaloid vessels arose from choriovitreal vessels adjacent to the optic nerve area. As previously reported, Math5(-/-) mice had a rudimentary optic nerve. The primary retinal vessels did not develop post-natally in the Math5(-/-) mice, however, branches of the hyaloid vasculature eventually dove into the retina and formed the inner retinal capillary networks. An astrocyte template only formed in some areas of the Math5(-/-) retina. In addition, GFAP(+) Müller cells were seen throughout the retina that had long processes wrapped around the hyaloid vessels. Transmission electron microscopy confirmed Müller cell abnormalities and revealed disruptions in the inner limiting membrane. The present data demonstrates that the loss of ganglion cells in the Math5(-/-) mice is associated with a lack of retinal vascular development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neuroglia/patologia , Células Ganglionares da Retina/fisiologia , Vasos Retinianos/patologia , Animais , Animais Recém-Nascidos , Técnica Indireta de Fluorescência para Anticorpo , Deleção de Genes , Técnicas de Genotipagem , Proteína Glial Fibrilar Ácida , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Vítreo Primário Hiperplásico Persistente/fisiopatologia , Lectinas de Plantas/metabolismo , Neovascularização Retiniana/fisiopatologia , Vasos Retinianos/metabolismo
18.
Transgenic Res ; 21(5): 1033-42, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22427112

RESUMO

Nuc1 is a spontaneous rat mutant resulting from a mutation in the Cryba1 gene, coding for ßA3/A1-crystallin. Our earlier studies with Nuc1 provided novel evidence that astrocytes, which express ßA3/A1-crystallin, have a pivotal role in retinal remodeling. The role of astrocytes in the retina is only beginning to be explored. One of the limitations in the field is the lack of appropriate animal models to better investigate the function of astrocytes in retinal health and disease. We have now established transgenic mice that overexpress the Nuc1 mutant form of Cryba1, specifically in astrocytes. Astrocytes in wild type mice show normal compact stellate structure, producing a honeycomb-like network. In contrast, in transgenics over-expressing the mutant (Nuc1) Cryba1 in astrocytes, bundle-like structures with abnormal patterns and morphology were observed. In the nerve fiber layer of the transgenic mice, an additional layer of astrocytes adjacent to the vitreous is evident. This abnormal organization of astrocytes affects both the superficial and deep retinal vascular density and remodeling. Fluorescein angiography showed increased venous dilation and tortuosity of branches in the transgenic retina, as compared to wild type. Moreover, there appear to be fewer interactions between astrocytes and endothelial cells in the transgenic retina than in normal mouse retina. Further, astrocytes overexpressing the mutant ßA3/A1-crystallin migrate into the vitreous, and ensheath the hyaloid artery, in a manner similar to that seen in the Nuc1 rat. Together, these data demonstrate that developmental abnormalities of astrocytes can affect the normal remodeling process of both fetal and retinal vessels of the eye and that ßA3/A1-crystallin is essential for normal astrocyte function in the retina.


Assuntos
Astrócitos/fisiologia , Cristalinas/metabolismo , Retina/crescimento & desenvolvimento , Vasos Retinianos/crescimento & desenvolvimento , Animais , Astrócitos/patologia , Western Blotting , Movimento Celular , Forma Celular , Cristalinas/genética , Angiofluoresceinografia , Imunofluorescência , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Regiões Promotoras Genéticas , Ratos , Retina/patologia , Vasos Retinianos/patologia , Transgenes
19.
Graefes Arch Clin Exp Ophthalmol ; 250(6): 839-48, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22411126

RESUMO

BACKGROUND: Nitric oxide (NO) is a multifunctional gaseous molecule that regulates various physiological functions in both neuronal and non-neuronal cells. NO is synthesized by nitric oxide synthases (NOSs), of which three isoforms have been identified. Neuronal NOS (nNOS) and endothelial NOS (eNOS) constitutively produce low levels of NO as a cell-signaling molecule in response to an increase in intracellular calcium concentration. Recent data have revealed a predominant role of eNOS in both angiogenesis and vasculogenesis. METHODS: The immunohistochemical localization of nNOS and eNOS was investigated during embryonic and fetal ocular vascular development from 7 to 21 weeks gestation (WG) on sections of cryopreserved tissue. RESULTS: eNOS was confined to endothelial cells of developing vessels at all ages studied. nNOS was prominent in nuclei of vascular endothelial and smooth muscle cells in the fetal vasculature of vitreous and choriocapillaris. nNOS was also prominent in the nuclei of CXCR4(+) progenitors in the inner retina and inner neuroblastic layer. CONCLUSIONS: These findings demonstrate co-expression of n- and eNOS isoforms in different compartments of vasoformative cells during development. Nuclear nNOS was present in vascular and nonvascular progenitors as well as endothelial cells and pericytes. This suggests that nNOS may play a role in the transcription regulatory systems in endothelial cells and pericytes during ocular hemo-vasculogenesis, vasculogenesis, and angiogenesis.


Assuntos
Tecido Conjuntivo/embriologia , Endotélio Vascular/embriologia , Olho/embriologia , Músculo Liso Vascular/embriologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Corioide/irrigação sanguínea , Corioide/embriologia , Tecido Conjuntivo/enzimologia , Desenvolvimento Embrionário , Endotélio Vascular/enzimologia , Olho/irrigação sanguínea , Desenvolvimento Fetal , Idade Gestacional , Humanos , Técnicas Imunoenzimáticas , Microscopia Confocal , Microscopia de Fluorescência , Músculo Liso Vascular/enzimologia , Neovascularização Fisiológica , Vasos Retinianos/embriologia , Vasos Retinianos/enzimologia , Corpo Vítreo/irrigação sanguínea , Corpo Vítreo/embriologia
20.
ScientificWorldJournal ; 2012: 949535, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22924029

RESUMO

The sickle hemoglobin is an abnormal hemoglobin due to point mutation (GAG → GTG) in exon 1 of the ß globin gene resulting in the substitution of glutamic acid by valine at position 6 of the ß globin polypeptide chain. Although the molecular lesion is a single-point mutation, the sickle gene is pleiotropic in nature causing multiple phenotypic expressions that constitute the various complications of sickle cell disease in general and sickle cell anemia in particular. The disease itself is chronic in nature but many of its complications are acute such as the recurrent acute painful crises (its hallmark), acute chest syndrome, and priapism. These complications vary considerably among patients, in the same patient with time, among countries and with age and sex. To date, there is no well-established consensus among providers on the management of the complications of sickle cell disease due in part to lack of evidence and in part to differences in the experience of providers. It is the aim of this paper to review available current approaches to manage the major complications of sickle cell disease. We hope that this will establish another preliminary forum among providers that may eventually lead the way to better outcomes.


Assuntos
Anemia Falciforme/complicações , Transfusão de Sangue/métodos , Gerenciamento Clínico , Anemia Falciforme/genética , Ensaios Clínicos como Assunto , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/etiologia , Gastroenteropatias/terapia , Humanos , Hidroxiureia/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Doenças Musculares/tratamento farmacológico , Doenças Musculares/etiologia , Doenças Musculares/terapia , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/terapia , Dor/tratamento farmacológico , Dor/etiologia , Dor/fisiopatologia , Fenótipo , Piperazinas/farmacologia , Purinas/farmacologia , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/etiologia , Doenças Retinianas/terapia , Citrato de Sildenafila , Sulfonas/farmacologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa