Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216370

RESUMO

The repair of severe nerve injuries requires an autograft or conduit to bridge the gap and avoid axon dispersion. Several conduits are used routinely, but their effectiveness is comparable to that of an autograft only for short gaps. Understanding nerve regeneration within short conduits could help improve their efficacy for longer gaps. Since Schwann cells are known to migrate on endothelial cells to colonize the "nerve bridge", the new tissue spontaneously forming to connect the injured nerve stumps, here we aimed to investigate whether this migratory mechanism drives Schwann cells to also proceed within the nerve conduits used to repair large nerve gaps. Injured median nerves of adult female rats were repaired with 10 mm chitosan conduits and the regenerated nerves within conduits were analyzed at different time points using confocal imaging of sequential thick sections. Our data showed that the endothelial cells formed a dense capillary network used by Schwann cells to migrate from the two nerve stumps into the conduit. We concluded that angiogenesis played a key role in the nerve conduits, not only by supporting cell survival but also by providing a pathway for the migration of newly formed Schwann cells.


Assuntos
Vasos Sanguíneos/fisiologia , Tecido Nervoso/fisiologia , Células de Schwann/fisiologia , Nervo Isquiático/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Vasos Sanguíneos/efeitos dos fármacos , Quitosana/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Feminino , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Tecido Nervoso/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/fisiopatologia , Ratos , Ratos Wistar , Células de Schwann/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Engenharia Tecidual/métodos
2.
PLoS Biol ; 16(9): e2005513, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30260948

RESUMO

The morphological, molecular, and functional heterogeneity of astrocytes is under intense scrutiny, but how this diversity is ontogenetically achieved remains largely unknown. Here, by quantitative in vivo clonal analyses and proliferation studies, we demonstrate that the major cerebellar astrocyte types emerge according to an unprecedented and remarkably orderly developmental program comprising (i) a time-dependent decline in both clone size and progenitor multipotency, associated with clone allocation first to the hemispheres and then to the vermis(ii) distinctive clonal relationships among astrocyte types, revealing diverse lineage potentials of embryonic and postnatal progenitors; and (iii) stereotyped clone architectures and recurrent modularities that correlate to layer-specific dynamics of postnatal proliferation/differentiation. In silico simulations indicate that the sole presence of a unique multipotent progenitor at the source of the whole astrogliogenic program is unlikely and rather suggest the involvement of additional committed components.


Assuntos
Astrócitos/citologia , Cerebelo/citologia , Animais , Animais Recém-Nascidos , Ciclo Celular , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Tamanho Celular , Cerebelo/embriologia , Células Clonais , Simulação por Computador , Feminino , Humanos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Substância Branca/citologia
3.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924098

RESUMO

Neurogranin (Ng) is a brain-specific postsynaptic protein, whose role in modulating Ca2+/calmodulin signaling in glutamatergic neurons has been linked to enhancement in synaptic plasticity and cognitive functions. Accordingly, Ng knock-out (Ng-ko) mice display hippocampal-dependent learning and memory impairments associated with a deficit in long-term potentiation induction. In the adult olfactory bulb (OB), Ng is expressed by a large population of GABAergic granule cells (GCs) that are continuously generated during adult life, undergo high synaptic remodeling in response to the sensory context, and play a key role in odor processing. However, the possible implication of Ng in OB plasticity and function is yet to be investigated. Here, we show that Ng expression in the OB is associated with the mature state of adult-born GCs, where its active-phosphorylated form is concentrated at post-synaptic sites. Constitutive loss of Ng in Ng-ko mice resulted in defective spine density in adult-born GCs, while their survival remained unaltered. Moreover, Ng-ko mice show an impaired odor-reward associative memory coupled with reduced expression of the activity-dependent transcription factor Zif268 in olfactory GCs. Overall, our data support a role for Ng in the molecular mechanisms underlying GC plasticity and the formation of olfactory associative memory.


Assuntos
Neurogranina/metabolismo , Animais , Western Blotting , Imuno-Histoquímica , Interneurônios/metabolismo , Camundongos , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Percepção Olfatória/fisiologia , Fosforilação
4.
J Neurosci ; 38(4): 826-842, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29217680

RESUMO

A newly proposed form of brain structural plasticity consists of non-newly generated, "immature" neurons of the adult cerebral cortex. Similar to newly generated neurons, these cells express the cytoskeletal protein Doublecortin (DCX), yet they are generated prenatally and then remain in a state of immaturity for long periods. In rodents, the immature neurons are restricted to the paleocortex, whereas in other mammals, they are also found in neocortex. Here, we analyzed the DCX-expressing cells in the whole sheep brain of both sexes to search for an indicator of structural plasticity at a cellular level in a relatively large-brained, long-living mammal. Brains from adult and newborn sheep (injected with BrdU and analyzed at different survival times) were processed for DCX, cell proliferation markers (Ki-67, BrdU), pallial/subpallial developmental origin (Tbr1, Sp8), and neuronal/glial antigens for phenotype characterization. We found immature-like neurons in the whole sheep cortex and in large populations of DCX-expressing cells within the external capsule and the surrounding gray matter (claustrum and amygdala). BrdU and Ki-67 detection at neonatal and adult ages showed that all of these DCX+ cells were generated during embryogenesis, not after birth. These results show that the adult sheep, unlike rodents, is largely endowed with non-newly generated neurons retaining immature features, suggesting that such plasticity might be particularly important in large-brained, long-living mammals.SIGNIFICANCE STATEMENT Brain plasticity is important in adaptation and brain repair. Structural changes span from synaptic plasticity to adult neurogenesis, the latter being highly reduced in large-brained, long-living mammals (e.g., humans). The cerebral cortex contains "immature" neurons, which are generated prenatally and then remain in an undifferentiated state for long periods, being detectable with markers of immaturity. We studied the distribution and developmental origin of these cells in the whole brain of sheep, relatively large-brained, long-living mammals. In addition to the expected cortical location, we also found populations of non-newly generated neurons in several subcortical regions (external capsule, claustrum, and amygdala). These results suggests that non-neurogenic, parenchymal structural plasticity might be more important in large mammals with respect to adult neurogenesis.


Assuntos
Encéfalo/citologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Animais , Feminino , Masculino , Células-Tronco Neurais/citologia , Ovinos
5.
Development ; 143(21): 3969-3981, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803058

RESUMO

Fertility in mammals is controlled by hypothalamic neurons that secrete gonadotropin-releasing hormone (GnRH). These neurons differentiate in the olfactory placodes during embryogenesis and migrate from the nose to the hypothalamus before birth. Information regarding this process in humans is sparse. Here, we adapted new tissue-clearing and whole-mount immunohistochemical techniques to entire human embryos/fetuses to meticulously study this system during the first trimester of gestation in the largest series of human fetuses examined to date. Combining these cutting-edge techniques with conventional immunohistochemistry, we provide the first chronological and quantitative analysis of GnRH neuron origins, differentiation and migration, as well as a 3D atlas of their distribution in the fetal brain. We reveal not only that the number of GnRH-immunoreactive neurons in humans is significantly higher than previously thought, but that GnRH cells migrate into several extrahypothalamic brain regions in addition to the hypothalamus. Their presence in these areas raises the possibility that GnRH has non-reproductive roles, creating new avenues for research on GnRH functions in cognitive, behavioral and physiological processes.


Assuntos
Encéfalo/embriologia , Diferenciação Celular , Movimento Celular , Fertilidade/fisiologia , Feto/citologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/fisiologia , Anatomia Artística , Atlas como Assunto , Encéfalo/citologia , Encéfalo/metabolismo , Mapeamento Encefálico/métodos , Embrião de Mamíferos , Desenvolvimento Embrionário/fisiologia , Feminino , Feto/embriologia , Feto/metabolismo , Humanos , Imageamento Tridimensional , Imuno-Histoquímica , Masculino , Neurônios/metabolismo
6.
Development ; 142(5): 840-5, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25655705

RESUMO

In the adult brain, subsets of astrocytic cells residing in well-defined neurogenic niches constitutively generate neurons throughout life. Brain lesions can stimulate neurogenesis in otherwise non-neurogenic regions, but whether local astrocytic cells generate neurons in these conditions is unresolved. Here, through genetic and viral lineage tracing in mice, we demonstrate that striatal astrocytes become neurogenic following an acute excitotoxic lesion. Similar to astrocytes of adult germinal niches, these activated parenchymal progenitors express nestin and generate neurons through the formation of transit amplifying progenitors. These results shed new light on the neurogenic potential of the adult brain parenchyma.


Assuntos
Astrócitos/citologia , Doença de Huntington/metabolismo , Animais , Astrócitos/metabolismo , Proteínas do Domínio Duplacortina , Imunofluorescência , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neuropeptídeos/metabolismo
7.
Development ; 141(21): 4065-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25336736

RESUMO

In the adult brain, active stem cells are a subset of astrocytes residing in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. Whether quiescent neuronal progenitors occur in other brain regions is unclear. Here, we describe a novel neurogenic system in the external capsule and lateral striatum (EC-LS) of the juvenile guinea pig that is quiescent at birth but becomes active around weaning. Activation of neurogenesis in this region was accompanied by the emergence of a neurogenic-like niche in the ventral EC characterized by chains of neuroblasts, intermediate-like progenitors and glial cells expressing markers of immature astrocytes. Like neurogenic astrocytes of the SVZ and DG, these latter cells showed a slow rate of proliferation and retained BrdU labeling for up to 65 days, suggesting that they are the primary progenitors of the EC-LS neurogenic system. Injections of GFP-tagged lentiviral vectors into the SVZ and the EC-LS of newborn animals confirmed that new LS neuroblasts originate from the activation of local progenitors and further supported their astroglial nature. Newborn EC-LS neurons existed transiently and did not contribute to neuronal addition or replacement. Nevertheless, they expressed Sp8 and showed strong tropism for white matter tracts, wherein they acquired complex morphologies. For these reasons, we propose that EC-LS neuroblasts represent a novel striatal cell type, possibly related to those populations of transient interneurons that regulate the development of fiber tracts during embryonic life.


Assuntos
Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Animais , Feminino , Cobaias , Masculino , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Técnicas de Cultura de Tecidos
8.
Cereb Cortex ; 19(5): 1028-41, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18832334

RESUMO

In adult rodents, doublecortin (DCX) and polysialylated neural cell adhesion molecule (PSA-NCAM) expression is mostly restricted to newly generated neurons. These molecules have also been described in prenatally generated cells of the piriform cortex and, to a lesser extent, neocortex (NC) of the rat. In addition, PSA-NCAM+ cells have been identified in several telencephalic regions of the lizard. Here, through immunohistochemistry and 3-dimensional reconstruction, we have investigated distribution, morphology, and phenotype of DCX/PSA-NCAM-expressing cells in the pallium of different mammals and in lizard. In all species, a population of nonnewly-generated pallial DCX+/PSA-NCAM+ cells shows common morphological and phenotypic characteristics, including expression of Tbr-1, a transcription factor expressed in pallial projection neurons, and preferential distribution in associative areas. In the guinea pig and rabbit, DCX+/PSA-NCAM+ elements are also abundant in the NC, particularly in areas implicated in nonspatial learning and memory networks. In reptiles, DCX+/PSA-NCAM+ cells are located in the lateral and medial cortex and dorsal ventricular ridge but not in the dorsal cortex. These data support the fact that coexpression of DCX+/PSA-NCAM+/Tbr-1+ in the adult brain identifies evolutionary conserved cell populations shared by different pallial derivatives including the mammalian NC.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Ácidos Siálicos/metabolismo , Telencéfalo/citologia , Telencéfalo/metabolismo , Animais , Aprendizagem por Associação/fisiologia , Evolução Biológica , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Cobaias , Lagartos , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos , Coelhos , Ratos , Ratos Wistar , Especificidade da Espécie , Vertebrados
9.
J Neurosci ; 26(2): 609-21, 2006 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-16407559

RESUMO

Stem cells with the potential to give rise to new neurons reside in different regions of the adult rodents CNS, but in vivo only the hippocampal dentate gyrus and the subventricular zone-olfactory bulb system are neurogenic under physiological condition. Comparative analyses have shown that vast species differences exist in the way the mammalian brain is organized and in its neurogenic capacity. Accordingly, we have demonstrated recently that, in the adult rabbit brain, striking structural plasticity persists in several cortical and subcortical areas. Here, by using markers for immature and mature neuronal and glial cell types, endogenous and exogenously administered cell-proliferation markers, intraventricular cell tracer injections coupled to confocal analysis, three-dimensional reconstructions, and in vitro tissue cultures, we demonstrate the existence of newly formed neurons in the caudate nucleus of normal, untreated, adult rabbit. Our results suggest that neurogenesis in the caudate nucleus is a phenomenon independent from that occurring in the adjacent subventricular zone, mostly attributable to the activity of clusters of proliferating cells located within the parenchyma of this nucleus. These clusters originate chains of neuroblasts that ultimately differentiate into mature neurons, which represent only a small percentage of the total neuronal precursors. These results indicate that striatum of rabbit represents a favorable environment for genesis rather than survival of newly formed neurons.


Assuntos
Núcleo Caudado/citologia , Neurônios/citologia , Coelhos/fisiologia , Células-Tronco/citologia , Animais , Biomarcadores , Calbindina 2 , Núcleo Caudado/crescimento & desenvolvimento , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Replicação do DNA , Feminino , Fluoresceínas/análise , Corantes Fluorescentes/análise , Imageamento Tridimensional , Técnicas Imunoenzimáticas , Interneurônios/química , Interneurônios/citologia , Microscopia Confocal , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/análise , Técnicas de Cultura de Órgãos , Proteína G de Ligação ao Cálcio S100/análise , Técnicas Estereotáxicas
10.
Neuropharmacology ; 116: 328-342, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28077289

RESUMO

Besides its classical function of bone metabolism regulation, 1alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3), acts on a variety of tissues including the nervous system, where the hormone plays an important role as neuroprotective, antiproliferating and differentiating agent. Sphingolipids are bioactive lipids that play critical and complex roles in regulating cell fate. In the present paper we have investigated whether sphingolipids are involved in the protective action of 1,25(OH)2D3. We have found that 1,25(OH)2D3 prevents amyloid-ß peptide (Aß(1-42)) cytotoxicity both in differentiated SH-SY5Y human neuroblastoma cells and in vivo. In differentiated SH-SY5Y cells, Aß(1-42) strongly reduces the sphingosine-1-phosphate (S1P)/ceramide (Cer) ratio while 1,25(OH)2D3 partially reverts this effect. 1,25(OH)2D3 reverts also the Aß(1-42)-induced reduction of sphingosine kinase activity. We have also studied the crosstalk between 1,25(OH)2D3 and S1P signaling pathways downstream to the activation of S1P receptor subtype S1P1. Notably, we found that 1,25(OH)2D3 prevents the reduction of S1P1 expression promoted by Aß(1-42) and thereby it modulates the downstream signaling leading to ER stress damage (p38MAPK/ATF4). Similar effects were observed by using ZK191784. In addition, chronic treatment with 1,25(OH)2D3 protects from aggregated Aß(1-42)-induced damage in the CA1 region of the rat hippocampus and promotes cell proliferation in the hippocampal dentate gyrus of adult mice. In conclusion, these results represent the first evidence of the role of 1,25(OH)2D3 and its structural analogue ZK191784 in counteracting the Aß(1-42) peptide-induced toxicity through the modulation of S1P/S1P1/p38MAPK/ATF4 pathway in differentiated SH-SY5Y cells.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Peptídeos beta-Amiloides/toxicidade , Calcitriol/farmacologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Receptores de Lisoesfingolipídeo/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Calcitriol/análogos & derivados , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Ceramidas/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos Long-Evans , Esfingosina/análogos & derivados , Esfingosina/metabolismo
11.
Endocrinology ; 146(4): 1825-34, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15625246

RESUMO

Expression of stathmin, a microtubule-associated cytoplasmic protein, prominently localized in neuroproliferative zones and neuronal migration pathways in brain, was investigated in the GnRH neuroendocrine system in vivo and the function was analyzed using an in vitro approach. Here we present novel data demonstrating that GnRH migrating neurons in nasal regions and basal forebrain areas of mouse embryos express stathmin protein. In addition, this expression pattern is dependent on location, as GnRH neurons reaching the hypothalamus are stathmin negative. Immortalized GN-11 cells, which retain many characteristics of migrating GnRH neurons, strongly express stathmin mRNA and protein. The role of stathmin in GnRH migratory properties was evaluated using GN-11 cell line. We up-regulated [stathmin-transfected clones (STMN)+] and down-regulated (STMN-) the expression of stathmin in GN-11 cells, and we investigated changes in cell morphology and motility in vitro. Cells overexpressing stathmin assume a spindle-shaped morphology and their proliferation, as well as their motility, is higher with respect to parental cells. Furthermore, they do not aggregate and express low levels of cadherins compared with control cells. STMN- GN-11 cells are endowed with multipolar processes, and they show a decreased motility and express high levels of cadherin protein. Our findings suggest that stathmin plays a permissive role in GnRH cell motility, possibly via modulation of cadherins expression.


Assuntos
Movimento Celular , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas dos Microtúbulos/fisiologia , Neurônios/fisiologia , Fosfoproteínas/fisiologia , Animais , Agregação Celular , Linhagem Celular , Proliferação de Células , Quimiotaxia , Camundongos , Estatmina , Transfecção
12.
Front Neurosci ; 9: 162, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029038

RESUMO

The neocortex is unique to mammals and its evolutionary origin is still highly debated. The neocortex is generated by the dorsal pallium ventricular zone, a germinative domain that in reptiles give rise to the dorsal cortex. Whether this latter allocortical structure contains homologs of all neocortical cell types it is unclear. Recently we described a population of DCX+/Tbr1+ cells that is specifically associated with the layer II of higher order areas of both the neocortex and of the more evolutionary conserved piriform cortex. In a reptile similar cells are present in the layer II of the olfactory cortex and the DVR but not in the dorsal cortex. These data are consistent with the proposal that the reptilian dorsal cortex is homologous only to the deep layers of the neocortex while the upper layers are a mammalian innovation. Based on our observations we extended these ideas by hypothesizing that this innovation was obtained by co-opting a lateral and/or ventral pallium developmental program. Interestingly, an analysis in the Allen brain atlas revealed a striking similarity in gene expression between neocortical layers II/III and piriform cortex. We thus propose a model in which the early neocortical column originated by the superposition of the lateral olfactory and dorsal cortex. This model is consistent with the fossil record and may account not only for the topological position of the neocortex, but also for its basic cytoarchitectural and hodological features. This idea is also consistent with previous hypotheses that the peri-allocortex represents the more ancient neocortical part. The great advances in deciphering the molecular logic of the amniote pallium developmental programs will hopefully enable to directly test our hypotheses in the next future.

13.
Neuropharmacology ; 63(4): 524-37, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22579669

RESUMO

1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3), a crucial regulator of calcium/phosphorus homeostasis, has important physiological effects on growth and differentiation in a variety of malignant and non-malignant cells. Synthetic structural hormone analogues, with lower hypercalcemic side effects, are currently under clinical investigation. Sphingolipids appear to be crucial bioactive factors in the control of the cell fate: the phosphorylated forms, sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), are mitogenic factors, whereas sphingosine and ceramide (Cer) usually act as pro-apoptotic agents. Although many studies correlate S1P function to impaired cell growth, the relevance of C1P/Cer system and its involvement in neuroblastoma cells remain to be clarified. Here, we demonstrated the anti-proliferative effect of 1,25(OH)2D3 as well as of its structural analogues, ZK156979 and ZK191784, in human SH-SY5Y cells, as judged by [³H]thymidine incorporation, cell growth and evaluation of active ERK1/2 levels. The inhibition of ceramide kinase (CerK), the enzyme responsible for C1P synthesis, by specific gene silencing or pharmacological inhibition, drastically reduced cell proliferation. 1,25(OH)2D3 and ZK191784 treatment induced a significant decrease in CerK expression and C1P content, and an increase of Cer. Notably, the treatment of SH-SY5Y cells with ZK159222, antagonist of 1,25(OH)2D3 receptor, trichostatin A, inhibitor of histone deacetylases, and COUP-TFI-siRNA prevented the decrease of CerK expression elicited by 1,25(OH)2D3 supporting the involvement of VDR/COUP-TFI/histone deacetylase complex in CerK regulation. Altogether, these findings provide the first evidence that CerK/C1P axis acts as molecular effector of the anti-proliferative action of 1,25(OH)2D3 and its analogues, thereby representing a new possible target for anti-cancer therapy of human neuroblastoma.


Assuntos
Antineoplásicos/farmacologia , Calcitriol/metabolismo , Proliferação de Células , Drogas em Investigação/farmacologia , Neuroblastoma/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais , Antineoplásicos/antagonistas & inibidores , Calcitriol/análogos & derivados , Calcitriol/antagonistas & inibidores , Calcitriol/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/metabolismo , Inibidores Enzimáticos/farmacologia , Inativação Gênica , Inibidores de Histona Desacetilases/farmacologia , Humanos , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Interferente Pequeno , Receptores de Calcitriol/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Vitamina D/análogos & derivados , Vitamina D/farmacologia
14.
Front Neurosci ; 5: 70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21625612

RESUMO

Current advances in imaging techniques have extended the possibility of visualizing small structures within large volumes of both fixed and live specimens without sectioning. These techniques have contributed valuable information to study neuronal plasticity in the adult brain. However, technical limits still hamper the use of these approaches to investigate neurogenic regions located far from the ventricular surface such as parenchymal neurogenic niches, or the scattered neuroblasts induced by brain lesions. Here, we present a method to combine confocal laser scanning microscopy (CLSM) and serial section reconstruction in order to reconstruct large volumes of brain tissue at cellular resolution. In this method a series of thick sections are imaged with CLSM and the resulting stacks of images are registered and 3D reconstructed. This approach is based on existing freeware software and can be performed on ordinary laboratory personal computers. By using this technique we have investigated the morphology and spatial organization of a group of doublecortin (DCX)+ neuroblasts located in the lateral striatum of the late post-natal guinea pig. The 3D study unraveled a complex network of long and poorly ramified cell processes, often fascicled and mostly oriented along the internal capsule fiber bundles. These data support CLSM serial section reconstruction as a reliable alternative to the whole mount approaches to analyze cyto-architectural features of adult germinative niches.

15.
PLoS One ; 6(9): e25088, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980380

RESUMO

Acute striatal lesions increase proliferation in the subventricular zone (SVZ) and induce migration of SVZ neuroblasts to the striatum. However, the potential of these cells to replace acutely degenerated neurons is controversial. The possible contribution of parenchymal progenitors to striatal lesion-induced neurogenesis has been poorly explored. Here, we present a detailed investigation of neurogenesis in the striatum of a mouse model showing slow progressive neurodegeneration of striatal neurons, the Creb1(Camkcre4)Crem⁻/⁻ mutant mice (CBCM). By using BrdU time course analyses, intraventricular injections of a cell tracker and 3D reconstructions we showed that neurodegeneration in CBCM mice stimulates the migration of SVZ neuroblasts to the striatum without altering SVZ proliferation. SVZ-neuroblasts migrate as chains through the callosal striatal border and then enter within the striatal parenchyma as individual cells. In addition, a population of clustered neuroblasts showing high turnover rates were observed in the mutant striatum that had not migrated from the SVZ. Clustered neuroblasts might originate within the striatum itself because they are specifically associated with parenchymal proliferating cells showing features of intermediate neuronal progenitors such as clustering, expression of EGF receptor and multiple glial (SOX2, SOX9, BLBP) and neuronal (Dlx, Sp8, and to some extent DCX) markers. Newborn striatal neurons had a short lifespan and did not replace projection neurons nor expressed sets of transcription factors involved in their specification. The differentiation failure of endogenous neuroblasts likely occurred cell autonomously because transplanted wild type embryonic precursors correctly differentiated into striatal projection neurons. Thus, we propose that under progressive degeneration, neither SVZ derived nor intra-striatal generated neurons have the potential to differentiate into striatal projection neurons.


Assuntos
Corpo Estriado/metabolismo , Corpo Estriado/patologia , Degeneração Neural/patologia , Animais , Modulador de Elemento de Resposta do AMP Cíclico/genética , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Mutantes , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Neurodegener Dis ; 4(4): 322-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17627136

RESUMO

Mechanisms underlying neurogenesis in the subventricular-zone-olfactory-bulb system and dentate gyrus of the hippocampus are beginning to be delineated and show common regulative features. In both regions neurogenesis is attributable to progenitor cells whose progeny progressively matures to functional neurons under genetic and epigenetic influence. Persistence of endogenous neuronal progenitors and integration of new neurons in preexisting circuits provide an appealing model of study to develop therapy strategies for neurodegenerative diseases. Interestingly, comparative analysis in mammals indicates that low neurogenic activity is also present in regions classically considered nonneurogenic in both normal and pathological conditions. Neurogenesis in these regions can be due to progenitors derived from the subventricular germinal zone and/or local parenchymal progenitors. Although, in vivo, the origin, identity and putative function of parenchymal progenitors are still obscure, in vitro studies suggest that many regions of the adult central nervous system potentially contain multipotent parenchymal progenitors. The aim of this review is to delineate the common regulative features underlying adult neurogenesis in the main neurogenic regions and in the striatum focusing on our recent data concerning the existence of local parenchymal progenitors in the caudate nucleus of the adult rabbit.


Assuntos
Corpo Estriado/citologia , Corpo Estriado/fisiologia , Neurônios/fisiologia , Células-Tronco/fisiologia , Animais , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa