Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(7): 4449-4468, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38819927

RESUMO

The γ-cyclodextrin (γ-CD) metal-organic frameworks (CD-MOF-1) consist of γ-CD and potassium (K+) ions through coordinating an eight-coordinated K+ ion with two C5-linked oxygen and C6-linked hydroxyl (C5-O/C6-OH) groups in the primary faces of adjacent γ-CD units and two C2- and C3-linked hydroxyl (C2-OH/C3-OH) groups in the secondary faces. Herein, we found polysaccharide gels with only C2-OH/C3-OH or C5-O/C6-OH groups in pyranoid rings can form four-coordinated K+ ions and then coordinate γ-CD in a KOH solution for CD-MOF-1 growth. Exposure of C2-OH/C3-OH or C5-O/C6-OH groups in polysaccharide gels is important to form active four-coordinated K+ ions. Mechanism supporting this work is that four-coordinated K+ ion sites are first formed after coordinating C2-OH/C3-OH groups in pectin and then coordinating C5-O/C6-OH groups in the primary faces of γ-CD units. Alternatively, four-coordinated K+ ions with C5-O/C6-OH groups in chitosan can coordinate the C2-OH/C3-OH groups in the secondary faces of γ-CD units. Mechanism of CD-MOF-1 growing on pectin and chitosan gels through the proposed four-coordinated K+ ions is also universally applicable to other polysaccharide gels with similar C2-OH/C3-OH or C5-O/C6-OH groups such as alginate gel. Based on this mechanism, we developed pectin and chitosan gel-based CD-MOF-1 composites and exemplified applications of them in antibacterial and organic dye removal. To help future research and applications of this mechanism, we share our theoretical assumption for further investigations that any matrices with an ortho-hydroxyl carbon chain or ortho-hydroxyl ether structures may form four-coordinated K+ ions for CD-MOF-1 growth. The proposed mechanism will broaden the development of novel CD-MOF-1 composites in various fields.


Assuntos
Géis , Potássio , Potássio/química , Géis/química , Porosidade , gama-Ciclodextrinas/química , Estruturas Metalorgânicas/química , Polissacarídeos/química , Pectinas/química , Íons/química
2.
J Cell Sci ; 131(4)2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361540

RESUMO

Unconventional myosin VIIA (Myo7a) is an actin-based motor molecule that normally functions in the cochlear hair cells of the inner ear. Mutations of MYO7A/Myo7a have been implicated in inherited deafness in both humans and mice. However, there is limited information about the functions of Myo7a outside of the specialized cells of the ears. Herein, we report a previously unidentified function of Myo7a by demonstrating that it plays an important role in melanoma progression. We found that silencing Myo7a by means of RNAi inhibited melanoma cell growth through upregulation of cell cycle regulator p21 (also known as CDKN1A) and suppressed melanoma cell migration and invasion through downregulation of RhoGDI2 (also known as ARHGDIB) and MMP9. Furthermore, Myo7a depletion suppressed melanoma cell metastases to the lung, kidney and bone in mice. In contrast, overexpression of Myo7a promoted melanoma xenograft growth and lung metastasis. Importantly, Myo7a levels are remarkably elevated in human melanoma patients. Collectively, we demonstrated for the first time that Myo7a is able to function in non-specialized cells, a finding that reveals the complicated disease-related roles of Myo7a, especially in melanomas.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Melanoma/genética , Miosinas/genética , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/genética , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Orelha Interna/metabolismo , Orelha Interna/patologia , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/secundário , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Metaloproteinase 9 da Matriz/genética , Melanoma/patologia , Camundongos , Mutação , Miosina VIIa , Miosinas/antagonistas & inibidores , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nucleic Acids Res ; 46(15): 7716-7730, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29982688

RESUMO

Linker histone H1 has a key role in maintaining higher order chromatin structure and genome stability, but how H1 functions in these processes is elusive. Here, we report that acetylation of lysine 85 (K85) within the H1 globular domain is a critical post-translational modification that regulates chromatin organization. H1K85 is dynamically acetylated by the acetyltransferase PCAF in response to DNA damage, and this effect is counterbalanced by the histone deacetylase HDAC1. Notably, an acetylation-mimic mutation of H1K85 (H1K85Q) alters H1 binding to the nucleosome and leads to condensed chromatin as a result of increased H1 binding to core histones. In addition, H1K85 acetylation promotes heterochromatin protein 1 (HP1) recruitment to facilitate chromatin compaction. Consequently, H1K85 mutation leads to genomic instability and decreased cell survival upon DNA damage. Together, our data suggest a novel model whereby H1K85 acetylation regulates chromatin structure and preserves chromosome integrity upon DNA damage.


Assuntos
Cromatina/metabolismo , Dano ao DNA , Instabilidade Genômica , Histonas/metabolismo , Lisina/metabolismo , Células A549 , Acetilação , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Cromatina/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Lisina/genética , Mutação , Nucleossomos/genética , Nucleossomos/metabolismo , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
4.
Food Chem ; 400: 134076, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36084596

RESUMO

Nonionic oil-in-water (O/W) nanoemulsion provides potential to stabilize hydrophobic bio-functional components in aqueous medium. Understanding safety of nanoemulsion droplets via investigating in vitro cell uptake and cellular substructural changes is important to achieve their practical applications. Herein, we developed a nonionic O/W nanoemulsion to stabilize representative bio-functional hydrophobic component of 9'-cis-bixin at pH 3-7 and ultraviolet (UV)-induced degradation at 365, 302, and 254 nm. In vitro cell uptake demonstrated that Caco-2 cells adequately enriched 9'-cis-bixin through fast uptake of nanoemulsion droplets within 15 min. However, excessive nanoemulsion droplets greatly decreased cell survival rate, which was due to the potential destruction of cellular substructures of mitochondria, nuclear membrane, and cell membrane. Lower nanoemulsion concentration provided no significant effects on Caco-2 cell survival. This work provided objective understanding on bio-functional component stability by nanoemulsion with in vitro safety evaluation.


Assuntos
Água , Células CACO-2 , Carotenoides , Emulsões/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Água/química
5.
Food Chem ; 421: 136132, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37094396

RESUMO

Bixin has desirable bioactivities but poor water solubility, which limits its practical applications. Enzymatic transesterification of methyl to alditol groups in bixin by Candida antarctica lipase B (CALB) improves bixin water solubility. Herein, magnetic CALB nanoreactors with diameter of 11.7 nm and CALB layer thickness of 3.5 nm were developed by covalently linking CALB onto silicon covered Fe3O4 nanoparticles. The CALB loading capacity in nanoreactors achieved 30%. The Michaelis constant (Km) and maximum reaction rate of magnetic CALB nanoreactors were 56.1 mmol/L and 0.2 mmol/(L·min). Magnetic CALB nanoreactors could circularly catalyze bixin-maltitol ester synthesis and keep catalytic efficiency of 62.6% after eight repetitive enzymatic reactions. Additionally, the optimal bixin-maltitol ester synthesis procedure was heating bixin-maltitol mixture at molar ratio of 1:7 in anhydrous 2-methyl-2-butanol-dimethylsulfoxide (8:2, v/v) at 50 °C for 24 h. Bixin-maltitol ester showed improved water solubility at pH 5.5 and 7.0.


Assuntos
Enzimas Imobilizadas , Ésteres , Candida , Proteínas Fúngicas , Álcoois Açúcares , Nanotecnologia , Fenômenos Magnéticos , Água
6.
Environ Int ; 159: 107040, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922181

RESUMO

Numerous studies have shown that the increasing trend of respiratory diseases have been closely associated with the endogenous toxic chemicals (polycyclic aromatic hydrocarbons, heavy metal ions, etc.) in PM10. In the present study, we aim to determine the strong correlations between the chemicals in PM10 and the adverse consequences. We used the ChemView DB, the ToxRef DB and a comprehensive literature analysis to collect, identify, and evaluate the chemicals in PM10 and their adverse effects on respiratory system, and then used the ToxCast DB to analyze their bioactivity and key targets through 1192 molecular targets and cell characteristic endpoints. Meanwhile, the bioinformatics analysis were carried out on the molecular targets to screen out prevention and treatment targets. A total of 310 chemicals related to the respiratory system were identified. An unsupervised two-directional heatmap was constructed based on hierarchical clustering of 227 chemicals by their effect scores. A subset of 253 chemicals with respiratory system toxicity had in vitro bioactivity on 318 molecular targets that could be described, clustered and annotated in the heatmap and bipartite network, which were analyzed based on the protein information in UniProt KB database and the software of GO, STRING, and KEGG. These results showed that the chemicals in PM10 have strong correlation with different types of respiratory system injury. The main pathways of respiratory system injury caused by PM10 are the Calcium signaling pathway, MAPK signaling pathway, and PI3K-AKT signaling pathway, and the core proteins in which are likely to be the molecular targets for the prevention and treatment of damage caused by PM10.


Assuntos
Biologia Computacional , Fosfatidilinositol 3-Quinases , Bases de Dados Factuais , Fosfatidilinositol 3-Quinases/metabolismo , Sistema Respiratório , Transdução de Sinais
7.
Nat Commun ; 12(1): 5548, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545082

RESUMO

Isoniazid (INH) is a first-line anti-tuberculosis drug used for nearly 70 years. However, the mechanism underlying the side effects of INH has remained elusive. Here, we report that INH and its metabolites induce a post-translational modification (PTM) of histones, lysine isonicotinylation (Kinic), also called 4-picolinylation, in cells and mice. INH promotes the biosynthesis of isonicotinyl-CoA (Inic-CoA), a co-factor of intracellular isonicotinylation. Mass spectrometry reveals 26 Kinic sites in histones in HepG2 cells. Acetyltransferases CREB-binding protein (CBP) and P300 catalyse histone Kinic, while histone deacetylase HDAC3 functions as a deisonicotinylase. Notably, MNase sensitivity assay and RNA-seq analysis show that histone Kinic relaxes chromatin structure and promotes gene transcription. INH-mediated histone Kinic upregulates PIK3R1 gene expression and activates the PI3K/Akt/mTOR signalling pathway in liver cancer cells, linking INH to tumourigenicity in the liver. We demonstrate that Kinic is a histone acylation mark with a pyridine ring, which may have broad biological effects. Therefore, INH-induced isonicotinylation potentially accounts for the side effects in patients taking INH long-term for anti-tuberculosis therapy, and this modification may increase the risk of cancer in humans.


Assuntos
Antituberculosos/farmacologia , Código das Histonas , Isoniazida/farmacologia , Ácidos Isonicotínicos/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Cromatina/metabolismo , Coenzima A/metabolismo , Células HeLa , Células Hep G2 , Histona Desacetilases/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Ácidos Isonicotínicos/química , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica , Regulação para Cima/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/metabolismo
8.
BMC Mol Cell Biol ; 21(1): 51, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620073

RESUMO

BACKGROUND: Methotrexate (MTX) is an antifolate agent which is widely used in clinic for treating malignancies, rheumatoid arthritis and ectopic pregnancy. As reported, MTX has side effects on gastrointestinal system, nervous system and reproductive system, while its potential damages on oocyte quality are still unclear. It is known that oocyte quality is essential for healthy conception and the forthcoming embryo development. Thus, this work studied the effects of MTX on the oocyte quality. RESULTS: We established MTX model mice by single treatment with 5 mg/Kg MTX. Both morphological and molecular biology studies were performed to assess the in-vivo matured oocytes quality and to analyze the related mechanisms. The in-vivo matured oocytes from MTX-treated mice had poor in-vitro fertilization ability, and the resulting embryo formation rates and blastocyst quality were lower than the control group. We found that the in-vivo matured MTX-treated mouse oocytes displayed abnormal transcript expressions for genes of key enzymes in the folate cycles. MTX increased the rate of abnormal chromosome alignment and affected the regulation of chromosome separation via disrupting the spindle morphology and reducing the mRNA expressions of MAD2 and Sgo1. MTX reduced the DNA methylation levels in the in-vivo matured oocytes, and further studies showed that MTX altered the expressions of DNMT1 and DNMT 3b, and may also affect the levels of the methyl donor and its metabolite. CONCLUSIONS: MTX impaired the in-vivo matured mouse oocyte quality by disturbing folate metabolism and affecting chromosome stability and methylation modification.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Metotrexato/efeitos adversos , Oócitos/patologia , Animais , Diferenciação Celular/genética , Cromossomos de Mamíferos/efeitos dos fármacos , Cromossomos de Mamíferos/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Fertilização in vitro , Ácido Fólico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos Endogâmicos ICR , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa