RESUMO
BACKGROUND: The heterogeneity of breast cancer makes identifying effective therapies challenging. The I-SPY 2 trial, a multicenter, adaptive phase 2 trial of neoadjuvant therapy for high-risk clinical stage II or III breast cancer, evaluated multiple new agents added to standard chemotherapy to assess the effects on rates of pathological complete response (i.e., absence of residual cancer in the breast or lymph nodes at the time of surgery). METHODS: We used adaptive randomization to compare standard neoadjuvant chemotherapy plus the tyrosine kinase inhibitor neratinib with control. Eligible women were categorized according to eight biomarker subtypes on the basis of human epidermal growth factor receptor 2 (HER2) status, hormone-receptor status, and risk according to a 70-gene profile. Neratinib was evaluated against control with regard to 10 biomarker signatures (prospectively defined combinations of subtypes). The primary end point was pathological complete response. Volume changes on serial magnetic resonance imaging were used to assess the likelihood of such a response in each patient. Adaptive assignment to experimental groups within each disease subtype was based on Bayesian probabilities of the superiority of the treatment over control. Enrollment in the experimental group was stopped when the 85% Bayesian predictive probability of success in a confirmatory phase 3 trial of neoadjuvant therapy reached a prespecified threshold for any biomarker signature ("graduation"). Enrollment was stopped for futility if the probability fell to below 10% for every biomarker signature. RESULTS: Neratinib reached the prespecified efficacy threshold with regard to the HER2-positive, hormone-receptor-negative signature. Among patients with HER2-positive, hormone-receptor-negative cancer, the mean estimated rate of pathological complete response was 56% (95% Bayesian probability interval [PI], 37 to 73%) among 115 patients in the neratinib group, as compared with 33% among 78 controls (95% PI, 11 to 54%). The final predictive probability of success in phase 3 testing was 79%. CONCLUSIONS: Neratinib added to standard therapy was highly likely to result in higher rates of pathological complete response than standard chemotherapy with trastuzumab among patients with HER2-positive, hormone-receptor-negative breast cancer. (Funded by QuantumLeap Healthcare Collaborative and others; I-SPY 2 TRIAL ClinicalTrials.gov number, NCT01042379.).
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Quinolinas/administração & dosagem , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Teorema de Bayes , Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/cirurgia , Feminino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Paclitaxel/administração & dosagem , Paclitaxel/efeitos adversos , Quinolinas/efeitos adversos , Receptor ErbB-2 , Receptores de Estrogênio , Receptores de Progesterona , Trastuzumab/administração & dosagemRESUMO
BACKGROUND: The genetic and clinical heterogeneity of breast cancer makes the identification of effective therapies challenging. We designed I-SPY 2, a phase 2, multicenter, adaptively randomized trial to screen multiple experimental regimens in combination with standard neoadjuvant chemotherapy for breast cancer. The goal is to match experimental regimens with responding cancer subtypes. We report results for veliparib, a poly(ADP-ribose) polymerase (PARP) inhibitor, combined with carboplatin. METHODS: In this ongoing trial, women are eligible for participation if they have stage II or III breast cancer with a tumor 2.5 cm or larger in diameter; cancers are categorized into eight biomarker subtypes on the basis of status with regard to human epidermal growth factor receptor 2 (HER2), hormone receptors, and a 70-gene assay. Patients undergo adaptive randomization within each biomarker subtype to receive regimens that have better performance than the standard therapy. Regimens are evaluated within 10 biomarker signatures (i.e., prospectively defined combinations of biomarker subtypes). Veliparib-carboplatin plus standard therapy was considered for HER2-negative tumors and was therefore evaluated in 3 signatures. The primary end point is pathological complete response. Tumor volume changes measured by magnetic resonance imaging during treatment are used to predict whether a patient will have a pathological complete response. Regimens move on from phase 2 if and when they have a high Bayesian predictive probability of success in a subsequent phase 3 neoadjuvant trial within the biomarker signature in which they performed well. RESULTS: With regard to triple-negative breast cancer, veliparib-carboplatin had an 88% predicted probability of success in a phase 3 trial. A total of 72 patients were randomly assigned to receive veliparib-carboplatin, and 44 patients were concurrently assigned to receive control therapy; at the completion of chemotherapy, the estimated rates of pathological complete response in the triple-negative population were 51% (95% Bayesian probability interval [PI], 36 to 66%) in the veliparib-carboplatin group versus 26% (95% PI, 9 to 43%) in the control group. The toxicity of veliparib-carboplatin was greater than that of the control. CONCLUSIONS: The process used in our trial showed that veliparib-carboplatin added to standard therapy resulted in higher rates of pathological complete response than standard therapy alone specifically in triple-negative breast cancer. (Funded by the QuantumLeap Healthcare Collaborative and others; I-SPY 2 TRIAL ClinicalTrials.gov number, NCT01042379.).
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzimidazóis/administração & dosagem , Carboplatina/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Teorema de Bayes , Benzimidazóis/efeitos adversos , Carboplatina/efeitos adversos , Feminino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Paclitaxel/administração & dosagem , Paclitaxel/efeitos adversos , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Neoplasias de Mama Triplo Negativas/cirurgiaRESUMO
The tyrosine kinase Fyn has been implicated as playing an important role in the generation of both stimulatory and inhibitory signaling events induced by TCR engagement. To assess the role of Fyn for antigen-driven negative selection and Treg development, which are both dependent on the strength and nature of TCR signaling, we generated mice that co-express the transgenes for OVA and the OT-II TCR, which recognizes a peptide from OVA. In mice expressing both transgenes, negative selection, Treg development in the thymus, and the number of Treg in the periphery were each unaffected by ablation of Fyn. Moreover, fyn(-/-) Treg were functional, as assessed in vitro. We further tested the role of Fyn for the adaptor function of c-Cbl, using mice containing a point mutation in c-Cbl that abolishes its E3 ubiquitin ligase function but maintains its adaptor function. The functional and signaling properties of this mutant c-Cbl were unaltered in fyn(-/-) thymocytes. Combined, these data indicate that Fyn was not required for the induction of central tolerance by negative selection, the adaptor protein role of c-Cbl, or the normal development and function of Treg.
Assuntos
Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Timo/metabolismo , Animais , Antígenos/imunologia , Western Blotting , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Proteínas Proto-Oncogênicas c-cbl/deficiência , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-fyn/deficiência , Proteínas Proto-Oncogênicas c-fyn/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T Reguladores/citologia , Timo/citologiaRESUMO
To better understand whether autoimmunity in Lyn-deficient mice arises from compromised central or peripheral B cell tolerance, we examined BCR signaling properties of wild-type and Lyn-deficient B cells at different stages of development. Wild-type mature follicular B cells were less sensitive to BCR stimulation than were immature transitional stage 1 B cells with regard to BCR-induced calcium elevation and ERK MAPK activation. In the absence of Lyn, mature B cell signaling was greatly enhanced, whereas immature B cell signaling was minimally affected. Correspondingly, Lyn deficiency substantially enhanced the sensitivity of mature B cells to activation via the BCR, but minimally affected events associated with tolerance induction at the immature stage. The effects of CD22 deficiency on BCR signaling were very similar in B cells at different stages of maturation. These results indicate that the Lyn-CD22-Src homology region 2 domain-containing phosphatase-1 inhibitory pathway largely becomes operational as B cell mature, and sets a threshold for activation that appears to be critical for the maintenance of tolerance in the B cell compartment.
Assuntos
Subpopulações de Linfócitos B/imunologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Tolerância Imunológica , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Receptores de Antígenos de Linfócitos B/antagonistas & inibidores , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Transdução de Sinais/imunologia , Quinases da Família src/genética , Animais , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/enzimologia , Subpopulações de Linfócitos B/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Tolerância Imunológica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Proteína Tirosina Fosfatase não Receptora Tipo 6/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 6/fisiologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/fisiologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/fisiologia , Transdução de Sinais/genética , Baço/citologia , Baço/enzimologia , Baço/imunologia , Regulação para Cima/genética , Regulação para Cima/imunologia , Quinases da Família src/deficiência , Quinases da Família src/fisiologiaRESUMO
New approaches to drug development are critically needed to lessen the time, cost, and resources necessary to identify and optimize active agents. Strategies to accelerate drug development include testing drugs earlier in the disease process, such as the neoadjuvant setting. The U.S. Food and Drug Administration (FDA) has issued guidance designed to accelerate drug approval through the use of neoadjuvant studies in which the surrogate short-term endpoint, pathologic response, can be used to identify active agents and shorten the time to approval of both efficacious drugs and biomarkers identifying patients most likely to respond. However, this approach has unique challenges. In particular, issues of patient safety are paramount, given the exposure of potentially curable patients to investigational agents with limited safety experience. Key components to safe drug development in the neoadjuvant setting include defining a study population at sufficiently poor prognosis with standard therapy to justify exposure to investigational agents, defining the extent and adequacy of safety data from phase I, detecting potentially harmful interactions between investigational and standard therapies, improving study designs, such as adaptive strategies, that limit patient exposure to ineffective agents, and intensifying safety monitoring in the course of the trial. The I-SPY2 trial is an example of a phase II neoadjuvant trial of novel agents for breast cancer in which these issues have been addressed, both in the design and conduct of the trial. These adaptations of phase II design enable acceleration of drug development by reducing time and cost to screen novel therapies for activity without compromising safety.