Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 14(9): e1007102, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30235334

RESUMO

Manganese (Mn) is an essential micronutrient that is not readily available to pathogens during infection due to an active host defense mechanism known as nutritional immunity. To overcome this nutrient restriction, bacteria utilize high-affinity transporters that allow them to compete with host metal-binding proteins. Despite the established role of Mn in bacterial pathogenesis, little is known about the relevance of Mn in the pathophysiology of E. faecalis. Here, we identified and characterized the major Mn acquisition systems of E. faecalis. We discovered that the ABC-type permease EfaCBA and two Nramp-type transporters, named MntH1 and MntH2, work collectively to promote cell growth under Mn-restricted conditions. The simultaneous inactivation of EfaCBA, MntH1 and MntH2 (ΔefaΔmntH1ΔmntH2 strain) led to drastic reductions (>95%) in cellular Mn content, severe growth defects in body fluids (serum and urine) ex vivo, significant loss of virulence in Galleria mellonella, and virtually complete loss of virulence in rabbit endocarditis and murine catheter-associated urinary tract infection (CAUTI) models. Despite the functional redundancy of EfaCBA, MntH1 and MntH2 under in vitro or ex vivo conditions and in the invertebrate model, dual inactivation of efaCBA and mntH2 (ΔefaΔmntH2 strain) was sufficient to prompt maximal sensitivity to calprotectin, a Mn- and Zn-chelating host antimicrobial protein, and for the loss of virulence in mammalian models. Interestingly, EfaCBA appears to play a prominent role during systemic infection, whereas MntH2 was more important during CAUTI. The different roles of EfaCBA and MntH2 in these sites could be attributed, at least in part, to the differential expression of efaA and mntH2 in cells isolated from hearts or from bladders. Collectively, this study demonstrates that Mn acquisition is essential for the pathogenesis of E. faecalis and validates Mn uptake systems as promising targets for the development of new antimicrobials.


Assuntos
Enterococcus faecalis/metabolismo , Enterococcus faecalis/patogenicidade , Manganês/metabolismo , Virulência/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas a Cateter/etiologia , Infecções Relacionadas a Cateter/metabolismo , Infecções Relacionadas a Cateter/microbiologia , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Modelos Animais de Doenças , Endocardite Bacteriana/etiologia , Endocardite Bacteriana/metabolismo , Endocardite Bacteriana/microbiologia , Enterococcus faecalis/genética , Infecções por Bactérias Gram-Positivas/etiologia , Infecções por Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Complexo Antígeno L1 Leucocitário/metabolismo , Camundongos , Mariposas/metabolismo , Mariposas/microbiologia , Coelhos , Infecções Urinárias/etiologia , Infecções Urinárias/metabolismo , Infecções Urinárias/microbiologia
2.
World J Urol ; 38(9): 2237-2245, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31792577

RESUMO

PURPOSE: Catheter-associated urinary tract infections (CAUTIs) are a significant cause of morbidity worldwide, as they account for 40% of all hospital-associated infections. Microbial biofilm formation on urinary catheters (UCs) limits antibiotic efficacy, making CAUTI extremely difficult to treat. To gain insight into the spatiotemporal microbe interactions on the catheter surface we sought to determine how the presence or absence of bacteriuria prior to catheterization affects the organism that ultimately forms a biofilm on the UC and how long after catheterization they emerge. METHODS: Thirty UCs were collected from patients who received a urine culture prior to catheterization, a UC, and antibiotics as part of standard of care. Immunofluorescence imaging and scanning electron microscopy were used to visualize patient UCs. RESULTS: Most patients did not have bacteria in their urine (based on standard urinalysis) prior to catheterization, yet microbes were detected on the majority of UCs, even with dwell times of < 3 days. The most frequently identified microbes were Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli. CONCLUSIONS: This study indicates that despite patients having negative urine cultures and receiving antibiotics prior to catheter placement, microbes, including uropathogens associated with causing CAUTI, could be readily detected on UCs with short dwell times. This suggests that a potential microbial catheter reservoir can form soon after placement, even in the presence of antibiotics, which may serve to facilitate the development of CAUTI. Thus, removing and/or replacing UCs as soon as possible is of critical importance to reduce the risk of developing CAUTI.


Assuntos
Antibacterianos/farmacologia , Bactérias/isolamento & purificação , Bacteriúria/microbiologia , Biofilmes/efeitos dos fármacos , Contaminação de Equipamentos , Cateteres Urinários/microbiologia , Antibacterianos/uso terapêutico , Feminino , Imunofluorescência , Humanos , Masculino , Microscopia Eletrônica de Varredura
3.
Aesthet Surg J ; 40(3): 281-295, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-30953053

RESUMO

BACKGROUND: Staphylococcus epidermidis is a primary cause of breast implant-associated infection. S epidermidis possesses several virulence factors that enable it to bind both abiotic surfaces and host factors to form a biofilm. In addition S epidermidis colocalizes with matrix proteins coating explanted human breast implants. OBJECTIVES: The authors sought to identify matrix proteins that S epidermidis may exploit to infect various breast implant surfaces in vitro. METHODS: A combination of in vitro assays was used to characterize S epidermidis strains isolated from human breast implants to gain a better understanding of how these bacteria colonize breast implant surfaces. These included determining the (1) minimum inhibitory and bactericidal concentrations for irrigation solutions commonly used to prevent breast implant contamination; (2) expression and carriage of polysaccharide intercellular adhesin and serine-aspartate repeat proteins, which bind fibrinogen (SdrG) and collagen (SdrF), respectively; and (3) biofilm formation on varying implant surface characteristics, in different growth media, and supplemented with fibrinogen and Types I and III collagen. Scanning electron microscopy and immunofluorescence staining analyses were performed to corroborate findings from these assays. RESULTS: Textured breast implant surfaces support greater bacterial biofilm formation at baseline, and the addition of collagen significantly increases biomass on all surfaces tested. We found that S epidermidis isolated from breast implants all encoded SdrF. Consistent with this finding, these strains had a clear affinity for Type I collagen, forming dense, highly structured biofilms in its presence. CONCLUSIONS: The authors found that S epidermidis may utilize SdrF to interact with Type I collagen to form biofilm on breast implant surfaces.


Assuntos
Implante Mamário , Implantes de Mama , Antibacterianos , Biofilmes , Implante Mamário/efeitos adversos , Implantes de Mama/efeitos adversos , Humanos , Staphylococcus epidermidis
4.
Artigo em Inglês | MEDLINE | ID: mdl-30782996

RESUMO

The antimicrobial triclosan is used in a wide range of consumer products ranging from toothpaste, cleansers, socks, and baby toys. A bacteriostatic inhibitor of fatty acid synthesis, triclosan is extremely stable and accumulates in the environment. Approximately 75% of adults in the United States have detectable levels of the compound in their urine, with a sizeable fraction of individuals (>10%) having urine concentrations equal to or greater than the minimal inhibitory concentration for Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Previous work has identified connections between defects in fatty acid synthesis and accumulation of the alarmone guanosine tetraphosphate (ppGpp), which has been repeatedly associated with antibiotic tolerance and persistence. Based on these data, we hypothesized that triclosan exposure may inadvertently drive bacteria into a state in which they are able to tolerate normally lethal concentrations of antibiotics. Here we report that clinically relevant concentrations of triclosan increased E. coli and MRSA tolerance to bactericidal antibiotics as much as 10,000-fold in vitro and reduced antibiotic efficacy up to 100-fold in a mouse urinary tract infection model. Genetic analysis indicated that triclosan-mediated antibiotic tolerance requires ppGpp synthesis but is independent of growth. These data highlight an unexpected and certainly unintended consequence of adding high concentrations of antimicrobials in consumer products, supporting an urgent need to reevaluate the costs and benefits of the prophylactic use of triclosan and other bacteriostatic compounds.


Assuntos
Anti-Infecciosos/uso terapêutico , Triclosan/uso terapêutico , Animais , Anti-Infecciosos/economia , Anti-Infecciosos/farmacocinética , Guanosina Tetrafosfato/metabolismo , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Testes de Sensibilidade Microbiana , Triclosan/economia , Triclosan/farmacocinética , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/metabolismo
5.
mBio ; 9(4)2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018113

RESUMO

Curli amyloid fibers are produced as part of the extracellular biofilm matrix and are composed primarily of the major structural subunit CsgA. The CsgE chaperone facilitates the secretion of CsgA through CsgG by forming a cap at the base of the nonameric CsgG outer membrane pore. We elucidated a series of finely tuned nonpolar and charge-charge interactions that facilitate the oligomerization of CsgE and its ability to transport unfolded CsgA to CsgG for translocation. CsgE oligomerization in vitro is temperature dependent and is disrupted by mutations in the W48 and F79 residues. Using nuclear magnetic resonance (NMR), we identified two regions of CsgE involved in the CsgE-CsgA interaction: a head comprising a positively charged patch centered around R47 and a stem comprising a negatively charged patch containing E31 and E85. Negatively charged residues in the intrinsically disordered N- and C-terminal "tails" were not implicated in this interaction. Head and stem residues were mutated and interrogated using in vivo measurements of curli production and in vitro amyloid polymerization assays. The R47 head residue of CsgE is required for stabilization of CsgA- and CsgE-mediated curli fiber formation. Mutation of the E31 and E85 stem residues to positively charged side chains decreased CsgE-mediated curli fiber formation but increased CsgE-mediated stabilization of CsgA. No single-amino-acid substitutions in the head, stem, or tail regions affected the ability of CsgE to cap the CsgG pore as determined by a bile salt sensitivity assay. These mechanistic insights into the directed assembly of functional amyloids in extracellular biofilms elucidate possible targets for biofilm-associated bacterial infections.IMPORTANCE Curli represent a class of functional amyloid fibers produced by Escherichia coli and other Gram-negative bacteria that serve as protein scaffolds in the extracellular biofilm matrix. Despite the lack of sequence conservation among different amyloidogenic proteins, the structural and biophysical properties of functional amyloids such as curli closely resemble those of amyloids associated with several common neurodegenerative diseases. These parallels are underscored by the observation that certain proteins and chemicals can prevent amyloid formation by the major curli subunit CsgA and by alpha-synuclein, the amyloid-forming protein found in Lewy bodies during Parkinson's disease. CsgA subunits are targeted to the CsgG outer membrane pore by CsgE prior to secretion and assembly into fibers. Here, we use biophysical, biochemical, and genetic approaches to elucidate a mechanistic understanding of CsgE function in curli biogenesis.


Assuntos
Amiloide/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos , Modelos Moleculares , Mutação , Polimerização , Ligação Proteica , Conformação Proteica , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa