Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(46): E6397-406, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26527659

RESUMO

Plant hybrids are extensively used in agriculture to deliver increases in yields, yet the molecular basis of their superior performance (heterosis) is not well understood. Our transcriptome analysis of a number of Arabidopsis F1 hybrids identified changes to defense and stress response gene expression consistent with a reduction in basal defense levels. Given the reported antagonism between plant immunity and growth, we suggest that these altered patterns of expression contribute to the greater growth of the hybrids. The altered patterns of expression in the hybrids indicate decreases to the salicylic acid (SA) biosynthesis pathway and increases in the auxin [indole-3-acetic acid (IAA)] biosynthesis pathway. SA and IAA are hormones known to control stress and defense responses as well as plant growth. We found that IAA-targeted gene activity is frequently increased in hybrids, correlating with a common heterotic phenotype of greater leaf cell numbers. Reduced SA concentration and target gene responses occur in the larger hybrids and promote increased leaf cell size. We demonstrated the importance of SA action to the hybrid phenotype by manipulating endogenous SA concentrations. Increasing SA diminished heterosis in SA-reduced hybrids, whereas decreasing SA promoted growth in some hybrids and phenocopied aspects of hybrid vigor in parental lines. Pseudomonas syringae infection of hybrids demonstrated that the reductions in basal defense gene activity in these hybrids does not necessarily compromise their ability to mount a defense response comparable to the parents.


Assuntos
Arabidopsis/metabolismo , Quimera/metabolismo , Vigor Híbrido/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Arabidopsis/microbiologia , Quimera/microbiologia , Resistência à Doença/fisiologia , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/metabolismo , Ácido Salicílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa