Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 35(47): 14990-14998, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31687824

RESUMO

Femtosecond (fs) laser-induced periodic surface structures (LIPSS) were selectively generated on the surface of an Ag-Si alloy consisting of a metallic and a semiconducting phase. For this purpose, the alloy was irradiated with linearly polarized fs-laser pulses (τ = 300 fs, λ = 1025 nm, frep = 100 kHz) using a laser peak fluence F = 0.30 J/cm2. Due to the different light absorption behaviors of the semiconductor (Si) and the metal (Ag) phases that result in different ablation thresholds of the respective phases, pronounced LIPSS with a period of Λ ≈ 950 nm and a modulation depth of h ≈ 220 nm were generated solely on the Si phase. The alloy surface was characterized by scanning electron microscopy, optical microscopy, white-light interference microscopy, and atomic force microscopy before and after laser irradiation. The chemical analysis was carried out by energy-dispersive X-ray spectroscopy, revealing surface oxidation of the Si phase and no laser-induced chemical modification of the Ag phase. The surface wettability of the alloy was evaluated with distilled water and compared to those of the single constituents of the composites. After fs-laser irradiation, the surface is characterized by a reduced hydrophilic water contact angle. Furthermore, the alloy selectively structured with LIPSS revealed a droplet shape change due to the distinctly different contact angles on the Si (θ = 5°) and Ag (θ = 74°) phases. This phenomenon was evaluated and discussed by local contact angle analyses using a confocal laser scanning microscope and Rhodamine B dye. In addition, it was shown that the shape change due to different contact angles of the components allowed a targeted droplet movement on a macroscopic material boundary (Ag/Si) of the alloy. Selectively structured metal/semiconductor surfaces might be of particular interest for microfluidic devices with a directional droplet movement and for the fundamental research of wettability.

2.
Int J Mol Sci ; 19(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445700

RESUMO

The regeneration of dental tissues is a still an unmet clinical need; in fact, no therapies have been completely successful in regenerating dental tissue complexes such as periodontium, which is also due to the lack of scaffolds that are able to guide and direct cell fate towards the reconstruction of different mineralized and non-mineralized dental tissues. In this respect, the present work develops a novel multifunctional hybrid scaffold recapitulating the different features of alveolar bone, periodontal ligament, and cementum by integrating the biomineralization process, and tape casting and electrospinning techniques. The scaffold is endowed with a superparamagnetic ability, thanks to the use of a biocompatible, bioactive superparamagnetic apatite phase, as a mineral component that is able to promote osteogenesis and to be activated by remote magnetic signals. The periodontal scaffold was obtained by engineering three different layers, recapitulating the relevant compositional and microstructural features of the target tissues, into a monolithic multifunctional graded device. Physico-chemical, morphological, and ultrastructural analyses, in association with preliminary in vitro investigations carried out with mesenchymal stem cells, confirm that the final scaffold exhibits a good mimicry of the periodontal tissue complex, with excellent cytocompatibility and cell viability, making it very promising for regenerative applications in dentistry.


Assuntos
Nanopartículas de Magnetita/química , Periodonto/fisiologia , Regeneração/fisiologia , Alicerces Teciduais/química , Processo Alveolar/fisiologia , Animais , Morte Celular , Linhagem Celular , Sobrevivência Celular , Colágeno/química , Cemento Dentário/fisiologia , Cavalos , Camundongos Endogâmicos BALB C , Ligamento Periodontal/fisiologia , Difração de Raios X
3.
Anal Chem ; 87(24): 12313-7, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26593634

RESUMO

The characterization of the surface chemistry of nanoparticles using infrared spectroscopy of adsorbed solvents is proposed. In conventional IR spectroscopy of nanomaterials the capability of characterizing the chemistry of the surface is limited. To overcome these limitations, we record IR spectra of different solvents inside a fixed bed of the nanopowder to be tested. Using water and different alcohols as solvents enables the characterization of the nanomaterial's surface chemistry via the molecular interactions affecting the hydrogen-bonding network in the solvent. Different ceramic nanopowders (titania, two different iron oxides, and iron oxide nanocrystallites embedded in a closed silica matrix) are studied using water, ethanol, and n-butanol as solvents. The OH stretching region of the IR spectra reveals characteristic differences in the surface chemistry of the nanoparticles. The proposed method is fast and straightforward, and hence, it can be a versatile tool for rapid screening.

4.
Opt Lett ; 40(24): 5734-7, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670499

RESUMO

The influence of different polarization states during the generation of periodic nanostructures on the surface of carbon fibers was investigated using a femtosecond laser with a pulse duration τ=300 fs, a wavelength λ=1025 nm, and a peak fluence F=4 J/cm². It was shown that linear polarization results in a well-aligned periodic pattern with different orders of magnitude concerning their period and an alignment parallel and perpendicular to fiber direction, respectively. For circular polarization, both types of uniform laser-induced periodic surface structures (LIPSS) patterns appear simultaneously with different dominance in dependence on the position at the fiber surface. Their orientation was explained by the polarization-dependent absorptivity and the geometrical anisotropy of the carbon fibers.

5.
J Mater Sci Mater Med ; 26(10): 245, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26411441

RESUMO

Bacterial nanocellulose (BNC) is chemically identical with plant cellulose but free of byproducts like lignin, pectin, and hemicelluloses, featuring a unique reticulate network of fine fibers. BNC sheets are mostly obtained by static cultivation. Now, a Horizontal Lift Reactor may provide a cost efficient method for mass production. This is of particular interest as BNC features several properties of an ideal wound dressing although it exhibits no bactericidal activity. Therefore, BNC was functionalized with the antiseptics povidone-iodine (PI) and polihexanide (PHMB). Drug loading and release, mechanical characteristics, biocompatibility, and antimicrobial efficacy were investigated. Antiseptics release was based on diffusion and swelling according to Ritger-Peppas equation. PI-loaded BNC demonstrated a delayed release compared to PHMB due to a high molar drug mass and structural changes induced by PI insertion into BNC that also increased the compressive strength of BNC samples. Biological assays demonstrated high biocompatibility of PI-loaded BNC in human keratinocytes but a distinctly lower antimicrobial activity against Staphylococcus aureus compared to PHMB-loaded BNC. Overall, BNC loaded with PHMB demonstrated a better therapeutic window. Moreover, compressive and tensile strength were not changed by incorporation of PHMB into BNC, and solidity during loading and release could be confirmed.


Assuntos
Anti-Infecciosos Locais/administração & dosagem , Biguanidas/administração & dosagem , Celulose , Nanopartículas , Povidona-Iodo/administração & dosagem , Acetobacteraceae/química , Acetobacteraceae/metabolismo , Anti-Infecciosos Locais/farmacocinética , Bandagens , Biguanidas/farmacocinética , Materiais Biocompatíveis/química , Materiais Biocompatíveis/isolamento & purificação , Fenômenos Biomecânicos , Linhagem Celular , Celulose/química , Celulose/isolamento & purificação , Humanos , Teste de Materiais , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/ultraestrutura , Povidona-Iodo/farmacocinética , Staphylococcus aureus/efeitos dos fármacos
6.
J Adhes Dent ; 15(5): 413-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23560259

RESUMO

PURPOSE: Differently prepared hydroxyapatite (HAp) nanoparticles were incorporated into the adhesive solution of a commercial adhesive system in order to evaluate the effect on microtensile bond strength to dentin. MATERIALS AND METHODS: HAp nanoparticles (20 to 70 nm) were prepared by different processes (biomimetic and hydrothermal) and incorporated into the adhesive of the Adper Scotchbond Multi-Purpose (SBMP) system at various concentrations. Control (unfilled) and experimental groups (filled) were applied onto flat mid-coronal human dentin. Composite crowns were built up and cut into beams with a cross-sectional area of 0.65 ± 0.05 mm2. Specimens were fractured in tension and examined with a scanning electron microscope (SEM) for fractographic analysis. Microtensile bond strength (µTBS) data were analyzed using a two-way ANOVA and modified LSD test at a = 0.05. Analysis of the nanofiller distribution and ultramorphological characterization of the interface was performed by transmission electron microscopy (TEM). RESULTS: HAp nanoparticle incorporation into the adhesive of SBMP significantly influenced µTBS to dentin depending on the fillers and the concentration used. A significant increase of the mechanical strength was obtained for the adhesives containing 1% (wt/vol) biomimetic and 5% hydrothermal silanized HAp particles, while the other particle fractions did not influence µTBS significantly. 10% (wt/vol) HAp particles significantly lowered the µTBS irrespective of the particle type used. TEM micrographs revealed nanoparticle dispersion through the adhesive layer but no deposition on or penetration into the hybrid layer. CONCLUSIONS: HAp nanoparticle incorporation into SBMP increased bond strength to dentin by cohesively reinforcing the interface adhesive layer. At a concentration of 10% (wt/vol), nanofiller incorporation had a negative effect on bond strength.


Assuntos
Materiais Biomiméticos/química , Cimentos Dentários/química , Durapatita/química , Nanopartículas/química , Adesividade , Bis-Fenol A-Glicidil Metacrilato/química , Cristalização , Colagem Dentária , Dentina/ultraestrutura , Humanos , Metacrilatos/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Cimentos de Resina/química , Silanos/química , Estresse Mecânico , Propriedades de Superfície , Temperatura , Resistência à Tração , Água/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-36880969

RESUMO

In this work, we investigated the sliding friction measured between poly(methyl methacrylate) (PMMA) colloidal probes with two different diameters D (1.5 and 15 µm) and laser-induced periodic surface structures (LIPSS) on stainless steel with periodicities Λ of 0.42 and 0.9 µm, when the probes are elastically driven along two directions, perpendicular and parallel to the LIPSS. The time evolution of the friction shows the characteristic features of a reverse stick-slip mechanism recently reported on periodic gratings. The morphologies of colloidal probes and modified steel surfaces are geometrically convoluted in the atomic force microscopy (AFM) topographies simultaneously recorded with the friction measurements. The LIPSS periodicity is only revealed with smaller probes (D = 1.5 µm) and when Λ takes the largest value of 0.9 µm. The average value of the friction force is found to be proportional to the normal load, with a coefficient of friction µ varying between 0.23 and 0.54. The values of µ are rather independent of the direction of motion, and they reach their maximum when the small probe is scanned on the LIPSS with the larger periodicity. The friction is also found to decrease with increasing velocity in all cases, which is attributed to the corresponding decrease of the viscoelastic contact time. These results can be used to model the sliding contacts formed by a set of spherical asperities of different sizes driven on a rough solid surface.

8.
Small Methods ; : e2301451, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38161249

RESUMO

The development and use of interface materials are essential to the continued advancement of organic solar cells (OSCs) performance. Self-assembled monolayer (SAM) materials have drawn attention because of their simple structure and affordable price. Due to their unique properties, they may be used in inverted devices as a modification layer for modifying ZnO or as a hole transport layer (HTL) in place of typical poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) in conventional devices. In this work, zinc oxide (ZnO) is modified using five structurally similar SAM materials. This resulted in a smoother surface, a decrease in work function, a suppression of charge recombination, and an increase in device efficiency and photostability. In addition, they can introduced asfor hole extraction layer between the active layer and MoO3 , enabling the use of the same material at several functional layers in the same device. Through systematic orthogonal evaluation, it is shown that some SAM/active layer/SAM combinations still offered device efficiencies comparable to ZnO/SAM, but with improved device' photostability. This study may provide recommendations for future SAM material's design and development as well as a strategy for boosting device performance by using the same material across both sides of the photoactive layer in OSCs.

9.
Langmuir ; 28(37): 13518-25, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22925063

RESUMO

Bacterial nanocellulose (BNC) is an extraordinary biopolymer with a wide range of potential technical applications. The high specific surface area and the interconnected pore system of the nanofibrillar BNC network suggest applications as a carrier of catalysts. The present paper describes an in situ modification route for the preparation of a hybrid material consisting of BNC and photocatalytically active anatase (TiO(2)) nanoparticles (NPs). The influence of different NP concentrations on the BNC biosynthesis and the resulting supramolecular structure of the hybrids was investigated. It was found that the number of colony forming units (CFUs) and the consumption of glucose during biosynthesis remained unaffected compared to unmodified BNC. During the formation of the BNC network, the NPs were incorporated in the whole volume of the accruing hybrid. Their distribution within the hybrid material is affected by the anisotropic structure of BNC. The photocatalytic activity (PCA) of the BNC-TiO(2) hybrids was determined by methanol conversion (MC) under UV irradiation. These tests demonstrated that the NPs retained their PCA after incorporation into the BNC carrier structure. The PCA of the hybrid material depends on the amount of incorporated NPs. No alteration of the photocatalyst's efficiency was found during repeated PCA tests. In conclusion, the in situ integration of photocatalytically active NPs into BNC represents an attractive possibility to extend its fields of application to porous filtering media for drinking water purification and air cleaning.


Assuntos
Celulose/biossíntese , Gluconacetobacter xylinus/metabolismo , Nanoestruturas/química , Titânio/metabolismo , Biocatálise , Celulose/química , Gluconacetobacter xylinus/química , Processos Fotoquímicos , Propriedades de Superfície , Titânio/química , Raios Ultravioleta
10.
Mater Sci Eng C Mater Biol Appl ; 135: 112655, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35577690

RESUMO

Magnetic bioactive glass-ceramics are biomaterials applied for magnetic hyperthermia in bone cancer treatment, thereby treating the bone tumor besides regenerating the damaged bone. However, combining high bioactivity and high saturation magnetization remains a challenge since the thermal treatment step employed to grow magnetic phases is also related to loss of bioactivity. Here, we propose a new nanocomposite made of superparamagnetic iron oxide nanoparticles (SPIONs) dispersed in a sol-gel-derived bioactive glass matrix, which does not need any thermal treatment for crystallization of magnetic phases. The scanning and transmission electron microscopies, X-ray diffraction, and dynamic light scattering results confirm that the SPIONs are actually embedded in a nanosized glass matrix, thus forming a nanocomposite. Magnetic and calorimetric characterizations evidence their proper behavior for hyperthermia applications, besides evidencing inter-magnetic nanoparticle interactions within the nanocomposite. Bioactivity and in vitro characterizations show that such nanocomposites exhibit apatite-forming properties similar to the highly bioactive parent glass, besides being osteoinductive. This methodology is a new alternative to produce magnetic bioactive materials to which the magnetic properties only rely on the quality of the SPIONs used in the synthesis. Thereby, these nanocomposites can be recognized as a new class of bioactive materials for applications in bone cancer treatment by hyperthermia.


Assuntos
Hipertermia Induzida , Nanocompostos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Vidro/química , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Magnéticos , Nanocompostos/química
11.
Nat Mater ; 9(12): 1010-4, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21076415

RESUMO

Unravelling the processes of calcium phosphate formation is important in our understanding of both bone and tooth formation, and also of pathological mineralization, for example in cardiovascular disease. Serum is a metastable solution from which calcium phosphate precipitates in the presence of calcifiable templates such as collagen, elastin and cell debris. A pathological deficiency of inhibitors leads to the uncontrolled deposition of calcium phosphate. In bone and teeth the formation of apatite crystals is preceded by an amorphous calcium phosphate (ACP) precursor phase. ACP formation is thought to proceed through prenucleation clusters--stable clusters that are present in solution already before nucleation--as was recently demonstrated for CaCO(3) (refs 15,16). However, the role of such nanometre-sized clusters as building blocks for ACP has been debated for many years. Here we demonstrate that the surface-induced formation of apatite from simulated body fluid starts with the aggregation of prenucleation clusters leading to the nucleation of ACP before the development of oriented apatite crystals.


Assuntos
Fosfatos de Cálcio/análise , Fosfatos de Cálcio/química , Animais , Apatitas/análise , Apatitas/química , Líquidos Corporais/química , Colágeno/análise , Microscopia Crioeletrônica , Cristalização , Durapatita/química , Ácidos Eicosanoicos/química , Tomografia com Microscopia Eletrônica , Humanos , Modelos Moleculares , Nanopartículas/química , Soluções/análise , Espectrometria por Raios X , Propriedades de Superfície , Temperatura
12.
J Mater Sci Mater Med ; 22(3): 429-36, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21221732

RESUMO

Calcium substituted trimagnesium phosphate with the general formula Ca(x)Mg((3-x))(PO(4))(2) (0 < x < 1.5) was synthesized by calcination of powder mixtures with the appropriate stoichiometry and reacted with 3.5 M diammonium hydrogenphosphate solution to form a cementitious matrix of magnesium ammonium phosphate hexahydrate (struvite). The degree of ionic substitution was shown to influence physical cement properties; clinically suitable cement formulations with setting times in the range 5-15 min and compressive strengths of >50 MPa were obtained for x ≤ 0.75 together with a grinding time ≥ 1 h and a powder to liquid ratio ≥ 2.5 g/ml. The cement cytocompatibility was investigated by culturing human osteoblast cell line MG63 on cement surfaces demonstrating pronounced cell growth during 13 days cultivation.


Assuntos
Cimentos Ósseos/química , Substitutos Ósseos/química , Compostos de Magnésio/química , Fosfatos/química , Fosfatos de Cálcio/química , Linhagem Celular , Proliferação de Células , Força Compressiva , Humanos , Espectrometria de Massas/métodos , Teste de Materiais , Microscopia Eletrônica de Varredura/métodos , Modelos Químicos , Porosidade , Pós , Estruvita , Fatores de Tempo , Difração de Raios X
13.
Am J Dent ; 24(2): 124-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21698994

RESUMO

PURPOSE: To evaluate the influence of different resin coating protocols on the fracture strength and wear resistance of a commercial glass-ionomer cement (GIC). METHODS: A new restorative concept [Equia (GC Europe)] has been introduced as a system application consisting of a condensable GIC (Fuji IX GP Extra) and a novel nanofilled resin coating material (G-Coat Plus). Four-point fracture strength (FS, 2 x 2 x 25 mm, 14-day storage, distilled water, 37 degrees C) were produced and measured from three experimental protocols: no coating GIC (Group 1), GIC coating before water contamination (Group 2), GIC coating after water contamination (Group 3). The strength data were analyzed using Weibull statistics. Three-body wear resistance (Group 1 vs. Group 2) was measured after each 10,000 wear cycles up to a total of 200,000 cycles using the ACTA method. GIC microstructure and interfaces between GIC and coating materials were investigated under SEM and CLSM. RESULTS: The highest FS of 26.1 MPa and the most homogenous behavior (m = 7.7) has been observed in Group 2. The coated and uncoated GIC showed similar wear resistance until 90,000 cycles. After 200,000 wear cycles, the coated version showed significantly higher wear rate (ANOVA, P< 0.05). The coating protocol has been shown to determine the GIC fracture strength. Coating after water contamination and air drying is leading to surface crack formation thus significantly reducing the FS. The resin coating showed a proper sealing of GIC surface porosities and cracks. In terms of wear, the coating did not improve the wear resistance of the underlying cement as similar or higher wear rates have been measured for Group 1 versus Group 2.


Assuntos
Materiais Revestidos Biocompatíveis , Resinas Compostas/química , Cimentos de Ionômeros de Vidro/química , Desgaste de Restauração Dentária , Análise do Estresse Dentário , Teste de Materiais , Microscopia Confocal , Microscopia Eletrônica de Varredura , Nanocompostos , Maleabilidade , Porosidade , Análise de Sobrevida , Molhabilidade
14.
Materials (Basel) ; 14(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34576436

RESUMO

The possibility of producing stable thin films, only a few atomic layers thick, from a variety of materials beyond graphene has led to two-dimensional (2D) materials being studied intensively in recent years. By reducing the layer thickness and approaching the crystallographic monolayer limit, a variety of unexpected and technologically relevant property phenomena were observed, which also depend on the subsequent arrangement and possible combination of individual layers to form heterostructures. These properties can be specifically used for the development of multifunctional devices, meeting the requirements of the advancing miniaturization of modern manufacturing technologies and the associated need to stabilize physical states even below critical layer thicknesses of conventional materials in the fields of electronics, magnetism and energy conversion. Differences in the structure of potential two-dimensional materials result in decisive influences on possible growth methods and possibilities for subsequent transfer of the thin films. In this review, we focus on recent advances in the rapidly growing field of two-dimensional materials, highlighting those with oxidic crystal structure like perovskites, garnets and spinels. In addition to a selection of well-established growth techniques and approaches for thin film transfer, we evaluate in detail their application potential as free-standing monolayers, bilayers and multilayers in a wide range of advanced technological applications. Finally, we provide suggestions for future developments of this promising research field in consideration of current challenges regarding scalability and structural stability of ultra-thin films.

15.
Nanoscale Adv ; 4(1): 182-189, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36132952

RESUMO

SrTiO3 is of particular interest for numerous applications such as photocatalytic water splitting, as an electrode material for thermoelectrics or as piezoceramics for sensors. Here we report on an advanced CO2 laser vaporization (LAVA) method for the production of faceted, single-phase SrTiO3 nanoparticles with an average particle size of 35 nm. Starting from a coarse SrTiO3 raw powder, spherical SrTiO3 nanoparticles were obtained by a laser-induced gas-phase condensation process. The composition of the nanoparticles corresponds to that of the starting powder, as XRD and FT-IR measurements show. Further hydrothermal treatment at 275 °C for 4 hours leads to the formation of faceted nanocubes with increasing crystallite size, as demonstrated by TEM, HR-TEM and XRD measurements. During a final washing step in 0.1 M HCl, SrCO3 impurities were dissolved and thus single-phase SrTiO3 nanocubes were successfully obtained, as shown by FT-IR, XRD and TEM analyses. The presented process facilitates the production of single-phase, highly crystalline SrTiO3 nanopowders in sufficient quantities for subsequent use in a variety of applications, in particular for hydrogen production by photocatalytic water splitting.

16.
Materials (Basel) ; 14(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800908

RESUMO

We present a unique dual laser beam processing approach based on excited state absorption by structuring 200 nm thin zinc oxide films sputtered on fused silica substrates. The combination of two pulsed nanosecond-laser beams with different photon energies-one below and one above the zinc oxide band gap energy-allows for a precise, efficient, and homogeneous ablation of the films without substrate damage. Based on structuring experiments in dependence on laser wavelength, pulse fluence, and pulse delay of both laser beams, a detailed concept of energy transfer and excitation processes during irradiation was developed. It provides a comprehensive understanding of the thermal and electronic processes during ablation. To quantify the efficiency improvements of the dual-beam process compared to single-beam ablation, a simple efficiency model was developed.

17.
Materials (Basel) ; 14(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34501069

RESUMO

Tailored intensity profiles within the focal spot of the laser beam offer great potential for a well-defined control of the interaction process between laser radiation and material, and thus for improving the processing results. The present paper discusses a novel refractive beam-shaping element that provides different squared intensity distributions converted from the Gaussian output beam of the utilized femtosecond (fs) laser. Using the examples of surface structuring of stainless-steel on the micro- and nano-scale, the suitability of the beam-shaping element for fs-laser material processing with a conventional f-Theta lens is demonstrated. In this context, it was shown that the experimental structuring results are in good agreement with beam profile measurements and numerical simulations of the beam-shaping unit. In addition, the experimental results reveal the improvement of laser processing in terms of a significantly reduced processing time during surface nano-structuring and the possibility to control the ablation geometry during the fabrication of micro-channels.

18.
Nanoscale ; 13(20): 9415-9435, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34002735

RESUMO

AIM: In this study, the influence of a serum albumin (SA) and human plasma (HP) derived protein- and lipid molecule corona on the toxicity and biodegradability of different iron oxide nanoparticles (IONP) was investigated. METHODS: IONP were synthesized and physicochemically characterized regarding size, charge, and colloidal stability. The adsorbed proteins were quantified and separated by gel electrophoresis. Adsorbed lipids were profiled by ultraperformance liquid chromatography-ESI-tandem mass spectrometry. The biocompatibility was investigated using isolated erythrocytes and a shell-less hen's egg model. The biodegradability was assessed by iron release studies in artificial body fluids. RESULTS: The adsorption patterns of proteins and lipids varied depending on the surface characteristics of the IONP like charge and hydrophobicity. The biomolecule corona modified IONP displayed favorable colloidal stability and toxicological profile compared to IONP without biomolecule coronas, reducing erythrocyte aggregation and hemolysis in vitro as well as the corresponding effects ex ovo/in vivo. The coronas decreased the degradation speed of all tested IONP compared to bare particles, but, whereas all IONP degraded at the same rate for the SA corona, substantial differences were evident for IONP with HP-derived corona depending on the lipid adsorption profile. CONCLUSION: In this study the impact of the proteins and lipids in the biomolecule corona on the entire IONP application cycle from the injection process to the degradation was demonstrated.


Assuntos
Nanopartículas , Coroa de Proteína , Animais , Galinhas , Feminino , Humanos , Lipídeos , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/toxicidade
19.
J Mater Sci Mater Med ; 21(11): 2947-53, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20740307

RESUMO

Synthetic bone replacement materials are of great interest because they offer certain advantages compared with organic bone grafts. Biodegradability and preoperative manufacturing of patient specific implants are further desirable features in various clinical situations. Both can be realised by 3D powder printing. In this study, we introduce powder-printed magnesium ammonium phosphate (struvite) structures, accompanied by a neutral setting reaction by printing farringtonite (Mg(3)(PO(4))(2)) powder with ammonium phosphate solution as binder. Suitable powders were obtained after sintering at 1100°C for 5 h following 20-40 min dry grinding in a ball mill. Depending on the post-treatment of the samples, compressive strengths were found to be in the range 2-7 MPa. Cytocompatibility was demonstrated in vitro using the human osteoblastic cell line MG63.


Assuntos
Cimentos Ósseos/síntese química , Temperatura Baixa , Compostos de Magnésio/química , Fosfatos/química , Alicerces Teciduais/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Força Compressiva , Galvanoplastia/métodos , Humanos , Compostos de Magnésio/síntese química , Compostos de Magnésio/farmacologia , Teste de Materiais/métodos , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Fosfatos/síntese química , Fosfatos/farmacologia , Pós/síntese química , Pós/química
20.
Oper Dent ; 35(5): 579-86, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20945750

RESUMO

This study evaluated the degree of conversion (%DC) of luting agents around ceramic inlays placed in deep natural cavities. Thirty-six cylindrical Class I cavities (diameter = 4 mm, depth = 4 mm) were prepared in freshly extracted human teeth and randomly divided according to the luting materials used for luting CAD/CAM fabricated inlays (Empress CAD). The dual-cure resin cements Clearfil Esthetic Cement and Variolink II Low and the light-cure composites Grandio Flow and Grandio were luted using the total-etch technique. The self-adhesive dual-cure cements RelyX Unicem and Maxcem Elite were used as recommended by the manufacturer. All of the restorations were photo-activated using a quartz halogen unit (Elipar TriLight; 750 mW/cm2) for 40 seconds. After 24 hour dry-storage in the dark, all the teeth were vertically sectioned into two halves (n = 12 per group) using a slow-speed diamond-saw in the bucco-vestibular direction under constant water lubrication to avoid specimen heating. The DC of the luting materials was measured by vibrational spectroscopy using a micro-Raman spectrometer at depths of 1, 3 and 4 mm on each side of the tooth halves (n = 24). Disc-shaped samples were produced for measurement of the maximum %DC of each material. Two-way ANOVA and the Student-Newman-Keuls post-hoc test were used in the statistical analysis (alpha = 0.05). All the materials showed no statistical differences in degree of conversion at all tested depths, except for Grandio Flow and Maxcem Elite. Dual-cure and light-cure luting materials showed polymerization homogeneity around ceramic inlays, although dual-cure conventional resin cements tended to show an overall higher conversion.


Assuntos
Preparo da Cavidade Dentária/métodos , Esmalte Dentário/ultraestrutura , Porcelana Dentária/química , Restaurações Intracoronárias , Cimentos de Resina/química , Condicionamento Ácido do Dente , Silicatos de Alumínio/química , Resinas Compostas/química , Desenho Assistido por Computador , Lâmpadas de Polimerização Dentária/classificação , Humanos , Microespectrofotometria , Polímeros/química , Análise Espectral Raman , Fatores de Tempo , Vibração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa