Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(36): 22281-22292, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32843340

RESUMO

Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth-ocean-atmosphere dynamic exchange of elements. The ratios' dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumption of limited seawater Mg:Ca and Sr:Ca variability across marine environments globally. High variability was found in open-ocean upwelling and polar regions, shelves/neritic and river-influenced areas, where seawater Mg:Ca and Sr:Ca ratios range from ∼4.40 to 6.40 mmol:mol and ∼6.95 to 9.80 mmol:mol, respectively. Open-ocean seawater Mg:Ca is semiconservative (∼4.90 to 5.30 mol:mol), while Sr:Ca is more variable and nonconservative (∼7.70 to 8.80 mmol:mol); both ratios are nonconservative in coastal seas. Further, the Ca, Mg, and Sr elemental fluxes are connected to large total alkalinity deviations from International Association for the Physical Sciences of the Oceans (IAPSO) standard values. Because there is significant modern seawater Mg:Ca and Sr:Ca ratios variability across marine environments we cannot absolutely assume that fossil archives using taxa-specific proxies reflect true global seawater chemistry but rather taxa- and process-specific ecosystem variations, reflecting regional conditions. This variability could reconcile secular seawater Mg:Ca and Sr:Ca ratio reconstructions using different taxa and techniques by assuming an error of 1 to 1.50 mol:mol, and 1 to 1.90 mmol:mol, respectively. The modern ratios' variability is similar to the reconstructed rise over 20 Ma (Neogene Period), nurturing the question of seminonconservative behavior of Ca, Mg, and Sr over modern Earth geological history with an overlooked environmental effect.

2.
Appl Microbiol Biotechnol ; 106(18): 6263-6276, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35972515

RESUMO

Peridinin is a light-harvesting carotenoid present in phototrophic dinoflagellates and has great potential for new drug applications and cosmetics development. Herein, the effects of irradiance mediated by light-emitting diodes on growth performance, carotenoid and fatty acid profiles, and antioxidant activity of the endosymbiotic dinoflagellate Durusdinium glynnii were investigated. The results demonstrate that D. glynnii is particularly well adapted to low-light conditions; however, it can be high-light-tolerant. In contrast to other light-harvesting carotenoids, the peridinin accumulation in D. glynnii occurred during high-light exposure. The peridinin to chlorophyll-a ratio varied as a function of irradiance, while the peridinin to total carotenoids ratio remained stable. Under optimal irradiance for growth, there was a peak in docosahexaenoic acid (DHA) bioaccumulation. This study contributes to the understanding of the photoprotective role of peridinin in endosymbiont dinoflagellates and highlights the antioxidant activity of peridinin-rich extracts. KEY POINTS: • Peridinin has a protective role against chlorophyll photo-oxidation • High light conditions induce cellular peridinin accumulation • D. glynnii accumulates high amounts of DHA under optimal light supply.


Assuntos
Dinoflagellida , Antioxidantes , Carotenoides , Clorofila , Ácidos Docosa-Hexaenoicos
3.
Environ Manage ; 57(3): 740-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26616429

RESUMO

An international multi-disciplinary group of 24 researchers met to discuss ocean acidification (OA) during the Brazilian OA Network/Surface Ocean-Lower Atmosphere Study (BrOA/SOLAS) Workshop. Fifteen members of the BrOA Network (www.broa.furg.br) authored this review. The group concluded that identifying and evaluating the regional effects of OA is impossible without understanding the natural variability of seawater carbonate systems in marine ecosystems through a series of long-term observations. Here, we show that the western South Atlantic Ocean (WSAO) lacks appropriate observations for determining regional OA effects, including the effects of OA on key sensitive Brazilian ecosystems in this area. The impacts of OA likely affect marine life in coastal and oceanic ecosystems, with further social and economic consequences for Brazil and neighboring countries. Thus, we present (i) the diversity of coastal and open ocean ecosystems in the WSAO and emphasize their roles in the marine carbon cycle and biodiversity and their vulnerabilities to OA effects; (ii) ongoing observational, experimental, and modeling efforts that investigate OA in the WSAO; and (iii) highlights of the knowledge gaps, infrastructure deficiencies, and OA-related issues in the WSAO. Finally, this review outlines long-term actions that should be taken to manage marine ecosystems in this vast and unexplored ocean region.


Assuntos
Ciclo do Carbono , Ecossistema , Água do Mar/química , Oceano Atlântico , Atmosfera , Biodiversidade , Brasil , Dióxido de Carbono/análise , Carbonatos , Humanos , Oceanos e Mares
4.
Environ Sci Pollut Res Int ; 30(34): 82142-82151, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37322400

RESUMO

Endosymbiotic dinoflagellates provide the nutritional basis for marine invertebrates, especially reef-building corals. These dinoflagellates are sensitive to environmental changes, and understanding the factors that can increase the resistance of the symbionts is crucial for the elucidation of the mechanisms involved with coral bleaching. Here, we demonstrate how the endosymbiotic dinoflagellate Durusdinium glynnii is affected by concentration (1760 vs 440 µM) and source (sodium nitrate vs urea) of nitrogen after light and thermal stress exposure. The effectiveness in the use of the two nitrogen forms was proven by the nitrogen isotopic signature. Overall, high nitrogen concentrations, regardless of source, increased D. glynnii growth, chlorophyll-a, and peridinin levels. During the pre-stress period, the use of urea accelerated the growth of D. glynnii compared to cells grown using sodium nitrate. During the luminous stress, high nitrate conditions increased cell growth, but no changes in pigments composition was observed. On the other hand, during thermal stress, a steep and steady decline in cell densities over time was observed, except for high urea condition, where there is cellular division and peridinin accumulation 72 h after the thermal shock. Our findings suggest peridinin has a protective role during the thermal stress, and the uptake of urea by D. glynnii can alleviate thermal stress responses, eventually mitigating coral bleaching events.


Assuntos
Antozoários , Dinoflagellida , Animais , Dinoflagellida/fisiologia , Nitrogênio , Antozoários/fisiologia , Simbiose , Recifes de Corais
5.
Geobiology ; 19(1): 63-74, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931664

RESUMO

Coccolithophores are a key functional phytoplankton group and produce minute calcite plates (coccoliths) in the sunlit layer of the pelagic ocean. Coccoliths significantly contribute to the sediment record since the Triassic and their geometry have been subject to palaeoceanographic and biological studies to retrieve information on past environmental conditions. Here, we present a comprehensive analysis of coccolith, coccosphere and cell volume data of the Southern Ocean Emiliania huxleyi ecotype A, subject to gradients of temperature, irradiance, carbonate chemistry and macronutrient limitation. All tested environmental drivers significantly affect coccosphere, coccolith and cell volume with driver-specific sensitivities. However, a highly significant correlation emerged between cell and coccolith volume with Vcoccolith  = 0.012 ± 0.001 * Vcell  + 0.234 ± 0.066 (n = 23, r2  = .85, p < .0001, σest  = 0.127), indicating a primary control of coccolith volume by physiological modulated changes in cell volume. We discuss the possible application of fossil coccolith volume as an indicator for cell volume/size and growth rate and, additionally, illustrate that macronutrient limitation of phosphorus and nitrogen has the predominant influence on coccolith volume in respect to other environmental drivers. Our results provide a solid basis for the application of coccolith volume and geometry as a palaeo-proxy and shed light on the underlying physiological reasons, offering a valuable tool to investigate the fossil record of the coccolithophore E. huxleyi.


Assuntos
Haptófitas , Carbonato de Cálcio , Tamanho Celular , Oceanos e Mares , Fitoplâncton
6.
ISME J ; 11(8): 1777-1787, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28430186

RESUMO

Future oceanic conditions induced by anthropogenic greenhouse gas emissions include warming, acidification and reduced nutrient supply due to increased stratification. Some parts of the Southern Ocean are expected to show rapid changes, especially for carbonate mineral saturation. Here we compare the physiological response of the model coccolithophore Emiliania huxleyi (strain EHSO 5.14, originating from 50oS, 149oE) with pH/CO2 gradients (mimicking ocean acidification ranging from 1 to 4 × current pCO2 levels) under nutrient-limited (nitrogen and phosphorus) and -replete conditions. Both nutrient limitations decreased per cell photosynthesis (particulate organic carbon (POC) production) and calcification (particulate inorganic carbon (PIC) production) rates for all pCO2 levels, with more than 50% reductions under nitrogen limitation. These impacts, however, became indistinguishable from nutrient-replete conditions when normalized to cell volume. Calcification decreased three-fold and linearly with increasing pCO2 under all nutrient conditions, and was accompanied by a smaller ~30% nonlinear reduction in POC production, manifested mainly above 3 × current pCO2. Our results suggest that normalization to cell volume allows the major impacts of nutrient limitation (changed cell sizes and reduced PIC and POC production rates) to be treated independently of the major impacts of increasing pCO2 and, additionally, stresses the importance of including cell volume measurements to the toolbox of standard physiological analysis of coccolithophores in field and laboratory studies.


Assuntos
Dióxido de Carbono/farmacologia , Haptófitas/fisiologia , Oceanos e Mares , Adaptação Fisiológica , Carbonatos , Fotossíntese , Água do Mar
7.
PLoS One ; 11(6): e0157697, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27348427

RESUMO

Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean.


Assuntos
Variação Genética , Haptófitas/genética , Fenótipo , Fitoplâncton/genética , Haptófitas/classificação , Fitoplâncton/classificação
8.
PLoS One ; 9(1): e86984, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489821

RESUMO

Ocean acidification substantially alters ocean carbon chemistry and hence pH but the effects on sea ice formation and the CO2 concentration in the enclosed brine channels are unknown. Microbial communities inhabiting sea ice ecosystems currently contribute 10-50% of the annual primary production of polar seas, supporting overwintering zooplankton species, especially Antarctic krill, and seeding spring phytoplankton blooms. Ocean acidification is occurring in all surface waters but the strongest effects will be experienced in polar ecosystems with significant effects on all trophic levels. Brine algae collected from McMurdo Sound (Antarctica) sea ice was incubated in situ under various carbonate chemistry conditions. The carbon chemistry was manipulated with acid, bicarbonate and bases to produce a pCO2 and pH range from 238 to 6066 µatm and 7.19 to 8.66, respectively. Elevated pCO2 positively affected the growth rate of the brine algal community, dominated by the unique ice dinoflagellate, Polarella glacialis. Growth rates were significantly reduced when pH dropped below 7.6. However, when the pH was held constant and the pCO2 increased, growth rates of the brine algae increased by more than 20% and showed no decline at pCO2 values more than five times current ambient levels. We suggest that projected increases in seawater pCO2, associated with OA, will not adversely impact brine algal communities.


Assuntos
Dióxido de Carbono/farmacologia , Eucariotos/fisiologia , Camada de Gelo , Regiões Antárticas , Carbonatos/análise , Clorofila/metabolismo , Clorofila A , Eucariotos/efeitos dos fármacos , Eucariotos/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa