Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Microbiol Immunol ; 213(1): 6, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722338

RESUMO

To date, there is no licensed vaccine for Middle East respiratory syndrome coronavirus (MERS-CoV). Therefore, MERS-CoV is one of the diseases targeted by the Coalition for Epidemic Preparedness Innovations (CEPI) vaccine development programs and has been classified as a priority disease by the World Health Organization (WHO). An important measure of vaccine immunogenicity and antibody functionality is the detection of virus-neutralizing antibodies. We have developed and optimized a microneutralization assay (MNA) using authentic MERS-CoV and standardized automatic counting of virus foci. Compared to our standard virus neutralization assay, the MNA showed improved sensitivity when analyzing 30 human sera with good correlation of results (Spearman's correlation coefficient r = 0.8917, p value < 0.0001). It is important to use standardized materials, such as the WHO international standard (IS) for anti-MERS-CoV immunoglobulin G, to compare the results from clinical trials worldwide. Therefore, in addition to the neutralizing titers (NT50 = 1384, NT80 = 384), we determined the IC50 and IC80 of WHO IS in our MNA to be 0.67 IU/ml and 2.6 IU/ml, respectively. Overall, the established MNA is well suited to reliably quantify vaccine-induced neutralizing antibodies with high sensitivity.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Coronavírus da Síndrome Respiratória do Oriente Médio , Testes de Neutralização , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Humanos , Testes de Neutralização/métodos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Animais , Concentração Inibidora 50 , Sensibilidade e Especificidade
2.
bioRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38979279

RESUMO

Ebolavirus disease (EVD) is caused by multiple species of Ebolavirus. Monoclonal antibodies (mAbs) against the virus glycoprotein (GP) are the only class of therapeutic approved for treatment of EVD caused by Zaire ebolavirus (EBOV). Therefore, mAbs targeting multiple Ebolavirus species may represent the next generation of EVD therapeutics. Broadly reactive anti-GP mAbs were produced; among these, mAbs 11886 and 11883 were broadly neutralizing in vitro. A 3.0 Å cryo-electron microscopy structure of EBOV GP bound to both mAbs shows that 11886 binds a novel epitope bridging the glycan cap (GC), 310 pocket and GP2 N-terminus, whereas 11883 binds the receptor binding region (RBR) and GC. In vitro, 11886 synergized with a range of mAbs with epitope specificities spanning the RBR/GC, including 11883. Notably, 11886 increased the breadth of neutralization by partner mAbs against different Ebolavirus species. These data provide a strategic route to design improved mAb-based next-generation EVD therapeutics.

3.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187682

RESUMO

Lassa fever continues to be a major public health burden in endemic countries in West Africa, yet effective therapies or vaccines are lacking. The isolation of potent and protective neutralizing antibodies against the Lassa virus glycoprotein complex (GPC) justifies the development of vaccines that can elicit strong neutralizing antibody responses. However, Lassa vaccines candidates have generally been unsuccessful in doing so and the associated antibody responses to these vaccines remain poorly characterized. Here, we establish an electron-microscopy based epitope mapping pipeline that enables high-resolution structural characterization of polyclonal antibodies to GPC. By applying this method to rabbits vaccinated with a recombinant GPC vaccine and a GPC-derived virus-like particle, we reveal determinants of neutralization which involve epitopes of the GPC-C, GPC-A, and GP1-A competition clusters. Furthermore, by identifying previously undescribed immunogenic off-target epitopes, we expose challenges that recombinant GPC vaccines face. By enabling detailed polyclonal antibody characterization, our work ushers in a next generation of more rational Lassa vaccine design.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa