Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Am Nat ; 204(1): E1-E10, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857345

RESUMO

AbstractIntransitive competition has received much attention over the past decade. Indeed, these cyclic arrangements of species interactions have the potential to promote and stabilize species coexistence. However, the importance of intransitive interactions in real-world species-rich communities containing a mixture of hierarchic and intransitive interactions remains unknown. Here, using simulations, we explore the behavior of intransitive loops when they interact with outer competitors, as would be expected in real-world communities. Our results show that dominant competitors often cancel the beneficial effects of intransitive loops of inferior competitors. These results call for caution when inferring beneficial effects of intransitivity on species coexistence. Although intransitive loops are a frequent motif in competition networks, their positive effects on species coexistence may be less important than previously thought. The specific properties of a subnetwork-such as stabilization by intransitive loops-should thus not be interpreted independently of the global network.


Assuntos
Comportamento Competitivo , Modelos Biológicos , Ecossistema , Simulação por Computador , Dinâmica Populacional , Animais
2.
Ecol Lett ; 26(7): 1119-1131, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37082882

RESUMO

The re-assembly of plant communities during climate warming depends on several concurrent processes. Here, we present a novel framework that integrates spatially explicit sampling, plant trait information and a warming experiment to quantify shifts in these assembly processes. By accounting for spatial distance between individuals, our framework allows separation of potential signals of environmental filtering from those of different types of competition. When applied to an elevational transplant experiment in the French Alps, we found common signals of environmental filtering and competition in all communities. Signals of environmental filtering were generally stronger in alpine than in subalpine control communities, and warming reduced this filter. Competition signals depended on treatments and traits: Symmetrical competition was dominant in control and warmed alpine communities, while hierarchical competition was present in subalpine communities. Our study highlights how distance-dependent frameworks can contribute to a better understanding of transient re-assembly dynamics during environmental change.


Assuntos
Clima , Plantas , Humanos , Fenótipo
3.
Ecol Lett ; 25(4): 913-925, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35064626

RESUMO

Outside controlled experimental plots, the impact of community attributes on primary productivity has rarely been compared to that of individual species. Here, we identified plant species of high importance for productivity (key species) in >29,000 diverse grassland communities in the European Alps, and compared their effects with those of community-level measures of functional composition (weighted means, variances, skewness and kurtosis). After accounting for the environment, the five most important key species jointly explained more deviance of productivity than any measure of functional composition alone. Key species were generally tall with high specific leaf areas. By dividing the observations according to distinct habitats, the explanatory power of key species and functional composition increased and key-species plant types and functional composition-productivity relationships varied systematically, presumably because of changing interactions and trade-offs between traits. Our results advocate for a careful consideration of species' individual effects on ecosystem functioning in complement to community-level measures.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Fenótipo , Folhas de Planta , Plantas
4.
Mol Ecol ; 30(13): 3313-3325, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33034070

RESUMO

Environmental DNA (eDNA) metabarcoding is becoming a key tool for biodiversity monitoring over large geographical or taxonomic scales and for elusive taxa such as soil organisms. Increasing sample sizes and interest in remote or extreme areas often require the preservation of soil samples and thus deviations from optimal standardized protocols. However, we still ignore the impact of different methods of soil sample preservation on the results of metabarcoding studies and there is no guideline for best practices so far. Here, we assessed the impact of four methods of soil sample preservation that can be conveniently used also in metabarcoding studies targeting remote or difficult to access areas. Tested methods include: preservation at room temperature for 6 hr, preservation at 4°C for 3 days, desiccation immediately after sampling and preservation for 21 days, and desiccation after 6 hr at room temperature and preservation for 21 days. For each preservation method, we benchmarked resulting estimates of taxon diversity and community composition of three different taxonomic groups (bacteria, fungi and eukaryotes) in three different habitats (forest, river bank and grassland) against results obtained under ideal conditions (i.e., extraction of eDNA immediately after sampling). Overall, the different preservation methods only marginally impaired results and only under certain conditions. When rare taxa were considered, we detected small but significant changes in molecular operational taxonomic units (MOTU) richness of bacteria, fungi and eukaryotes across treatments, but MOTU richness was similar across preservation methods if rare taxa were not considered. All the approaches were able to identify differences in community structure among habitats, and the communities retrieved using the different preservation conditions were extremely similar. We propose guidelines on the selection of the optimal soil sample preservation conditions for metabarcoding studies, depending on the practical constraints, costs and ultimate research goals.


Assuntos
DNA Ambiental , Biodiversidade , Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Florestas , Solo
5.
Glob Chang Biol ; 24(1): e289-e302, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28833915

RESUMO

Across the globe, invasive alien species cause severe environmental changes, altering species composition and ecosystem functions. So far, mountain areas have mostly been spared from large-scale invasions. However, climate change, land-use abandonment, the development of tourism and the increasing ornamental trade will weaken the barriers to invasions in these systems. Understanding how alien species will react and how native communities will influence their success is thus of prime importance in a management perspective. Here, we used a spatially and temporally explicit simulation model to forecast invasion risks in a protected mountain area in the French Alps under future conditions. We combined scenarios of climate change, land-use abandonment and tourism-linked increases in propagule pressure to test if the spread of alien species in the region will increase in the future. We modelled already naturalized alien species and new ornamental plants, accounting for interactions among global change components, and also competition with the native vegetation. Our results show that propagule pressure and climate change will interact to increase overall species richness of both naturalized aliens and new ornamentals, as well as their upper elevational limits and regional range-sizes. Under climate change, woody aliens are predicted to more than double in range-size and herbaceous species to occupy up to 20% of the park area. In contrast, land-use abandonment will open new invasion opportunities for woody aliens, but decrease invasion probability for naturalized and ornamental alien herbs as a consequence of colonization by native trees. This emphasizes the importance of interactions with the native vegetation either for facilitating or potentially for curbing invasions. Overall, our work highlights an additional and previously underestimated threat for the fragile mountain flora of the Alps already facing climate changes, land-use transformations and overexploitation by tourism.


Assuntos
Altitude , Mudança Climática , Ecossistema , Espécies Introduzidas , Plantas/classificação , Simulação por Computador , Demografia , Humanos , Modelos Biológicos , Viagem
6.
Ecol Lett ; 19(7): 729-42, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27282314

RESUMO

Although our knowledge on the stabilising role of biodiversity and on how it is affected by perturbations has greatly improved, we still lack a comprehensive view on ecosystem stability that is transversal to different habitats and perturbations. Hence, we propose a framework that takes advantage of the multiplicity of components of an ecosystem and their contribution to stability. Ecosystem components can range from species or functional groups, to different functional traits, or even the cover of different habitats in a landscape mosaic. We make use of n-dimensional hypervolumes to define ecosystem states and assess how much they shift after environmental changes have occurred. We demonstrate the value of this framework with a study case on the effects of environmental change on Alpine ecosystems. Our results highlight the importance of a multidimensional approach when studying ecosystem stability and show that our framework is flexible enough to be applied to different types of ecosystem components, which can have important implications for the study of ecosystem stability and transient dynamics.


Assuntos
Biodiversidade , Ecologia/métodos , Ecossistema , Modelos Biológicos , Plantas
7.
Ecol Lett ; 19(3): 219-29, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26689431

RESUMO

Whether the success of alien species can be explained by their functional or phylogenetic characteristics remains unresolved because of data limitations, scale issues and weak quantifications of success. Using permanent grasslands across France (50 000 vegetation plots, 2000 species, 130 aliens) and building on the Rabinowitz's classification to quantify spread, we showed that phylogenetic and functional similarities to natives were the most important correlates of invasion success compared to intrinsic functional characteristics and introduction history. Results contrasted between spatial scales and components of invasion success. Widespread and common aliens were similar to co-occurring natives at coarse scales (indicating environmental filtering), but dissimilar at finer scales (indicating local competition). In contrast, regionally widespread but locally rare aliens showed patterns of competitive exclusion already at coarse scale. Quantifying trait differences between aliens and natives and distinguishing the components of invasion success improved our ability to understand and potentially predict alien spread at multiple scales.


Assuntos
Pradaria , Espécies Introduzidas , Dispersão Vegetal , França
8.
Glob Chang Biol ; 22(8): 2651-64, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26872305

RESUMO

Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species.


Assuntos
Benchmarking , Mudança Climática , Ecossistema , Teorema de Bayes , Clima , Modelos Biológicos , Dinâmica Populacional
9.
Ecol Lett ; 18(12): 1321-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26439311

RESUMO

The extent that biotic interactions and dispersal influence species ranges and diversity patterns across scales remains an open question. Answering this question requires framing an analysis on the frontier between species distribution modelling (SDM), which ignores biotic interactions and dispersal limitation, and community ecology, which provides specific predictions on community and meta-community structure and resulting diversity patterns such as species richness and functional diversity. Using both empirical and simulated datasets, we tested whether predicted occurrences from fine-resolution SDMs provide good estimates of community structure and diversity patterns at resolutions ranging from a resolution typical of studies within reserves (250 m) to that typical of a regional biodiversity study (5 km). For both datasets, we show that the imprint of biotic interactions and dispersal limitation quickly vanishes when spatial resolution is reduced, which demonstrates the value of SDMs for tracking the imprint of community assembly processes across scales.


Assuntos
Distribuição Animal , Biodiversidade , Dispersão Vegetal , Modelos Biológicos , Dinâmica Populacional , Análise Espacial
10.
Glob Ecol Biogeogr ; 23(6): 620-632, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24791149

RESUMO

AIM: Phylogenetic diversity patterns are increasingly being used to better understand the role of ecological and evolutionary processes in community assembly. Here, we quantify how these patterns are influenced by scale choices in terms of spatial and environmental extent and organismic scales. LOCATION: European Alps. METHODS: We applied 42 sampling strategies differing in their combination of focal scales. For each resulting sub-dataset, we estimated the phylogenetic diversity of the species pools, phylogenetic α-diversities of local communities, and statistics commonly used together with null models in order to infer non-random diversity patterns (i.e. phylogenetic clustering versus over-dispersion). Finally, we studied the effects of scale choices on these measures using regression analyses. RESULTS: Scale choices were decisive for revealing signals in diversity patterns. Notably, changes in focal scales sometimes reversed a pattern of over-dispersion into clustering. Organismic scale had a stronger effect than spatial and environmental extent. However, we did not find general rules for the direction of change from over-dispersion to clustering with changing scales. Importantly, these scale issues had only a weak influence when focusing on regional diversity patterns that change along abiotic gradients. MAIN CONCLUSIONS: Our results call for caution when combining phylogenetic data with distributional data to study how and why communities differ from random expectations of phylogenetic relatedness. These analyses seem to be robust when the focus is on relating community diversity patterns to variation in habitat conditions, such as abiotic gradients. However, if the focus is on identifying relevant assembly rules for local communities, the uncertainty arising from a certain scale choice can be immense. In the latter case, it becomes necessary to test whether emerging patterns are robust to alternative scale choices.

11.
Ecography ; 37(12): 1155-1166, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25722536

RESUMO

Hutchinson defined species' realized niche as the set of environmental conditions in which populations can persist in the presence of competitors. In terms of demography, the realized niche corresponds to the environments where the intrinsic growth rate (r) of populations is positive. Observed species occurrences should reflect the realized niche when additional processes like dispersal and local extinction lags do not have overwhelming effects. Despite the foundational nature of these ideas, quantitative assessments of the relationship between range-wide demographic performance and occurrence probability have not been made. This assessment is needed both to improve our conceptual understanding of species' niches and ranges and to develop reliable mechanistic models of species geographic distributions that incorporate demography and species interactions. The objective of this study is to analyse how demographic parameters (intrinsic growth rate r and carrying capacity K) and population density (N) relate to occurrence probability (Pocc ). We hypothesized that these relationships vary with species' competitive ability. Demographic parameters, density, and occurrence probability were estimated for 108 tree species from four temperate forest inventory surveys (Québec, Western US, France and Switzerland). We used published information of shade tolerance as indicators of light competition strategy, assuming that high tolerance denotes high competitive capacity in stable forest environments. Interestingly, relationships between demographic parameters and occurrence probability did not vary substantially across degrees of shade tolerance and regions. Although they were influenced by the uncertainty in the estimation of the demographic parameters, we found that r was generally negatively correlated with Pocc , while N, and for most regions K, was generally positively correlated with Pocc . Thus, in temperate forest trees the regions of highest occurrence probability are those with high densities but slow intrinsic population growth rates. The uncertain relationships between demography and occurrence probability suggests caution when linking species distribution and demographic models.

12.
Ecography ; 37(12): 1198-1209, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25722537

RESUMO

Ongoing and predicted global change makes understanding and predicting species' range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.

13.
Sci Data ; 11(1): 795, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025901

RESUMO

In our changing world, understanding plant community responses to global change drivers is critical for predicting future ecosystem composition and function. Plant functional traits promise to be a key predictive tool for many ecosystems, including grasslands; however, their use requires both complete plant community and functional trait data. Yet, representation of these data in global databases is sparse, particularly beyond a handful of most used traits and common species. Here we present the CoRRE Trait Data, spanning 17 traits (9 categorical, 8 continuous) anticipated to predict species' responses to global change for 4,079 vascular plant species across 173 plant families present in 390 grassland experiments from around the world. The dataset contains complete categorical trait records for all 4,079 plant species obtained from a comprehensive literature search, as well as nearly complete coverage (99.97%) of imputed continuous trait values for a subset of 2,927 plant species. These data will shed light on mechanisms underlying population, community, and ecosystem responses to global change in grasslands worldwide.


Assuntos
Pradaria , Plantas , Plantas/classificação , Ecossistema
14.
Ecol Lett ; 16 Suppl 1: 94-105, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23679011

RESUMO

The demand for projections of the future distribution of biodiversity has triggered an upsurge in modelling at the crossroads between ecology and evolution. Despite the enthusiasm around these so-called biodiversity models, most approaches are still criticised for not integrating key processes known to shape species ranges and community structure. Developing an integrative modelling framework for biodiversity distribution promises to improve the reliability of predictions and to give a better understanding of the eco-evolutionary dynamics of species and communities under changing environments. In this article, we briefly review some eco-evolutionary processes and interplays among them, which are essential to provide reliable projections of species distributions and community structure. We identify gaps in theory, quantitative knowledge and data availability hampering the development of an integrated modelling framework. We argue that model development relying on a strong theoretical foundation is essential to inspire new models, manage complexity and maintain tractability. We support our argument with an example of a novel integrated model for species distribution modelling, derived from metapopulation theory, which accounts for abiotic constraints, dispersal, biotic interactions and evolution under changing environmental conditions. We hope such a perspective will motivate exciting and novel research, and challenge others to improve on our proposed approach.


Assuntos
Biodiversidade , Evolução Biológica , Modelos Teóricos , Adaptação Fisiológica , Aedes/fisiologia , Animais , Austrália , Bromus/fisiologia , Mudança Climática , Ecologia , Ecossistema , Modelos Biológicos , Fenótipo
15.
Ecography ; 36(5): 560-568, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24860240

RESUMO

Darwin proposed two seemingly contradictory hypotheses for a better understanding of biological invasions. Strong relatedness of invaders to native communities as an indication of niche overlap could promote naturalization because of appropriate niche adaptation, but could also hamper naturalization because of negative interactions with native species ('Darwin's naturalization hypothesis'). Although these hypotheses provide clear and opposing predictions for expected patterns of species relatedness in invaded communities, so far no study has been able to clearly disentangle the underlying mechanisms. We hypothesize that conflicting past results are mainly due to the neglected role of spatial resolution of the community sampling. In this study, we corroborate both of Darwin's expectations by using phylogenetic relatedness as a measure of niche overlap and by testing the effects of sampling resolution in highly invaded coastal plant communities. At spatial resolutions fine enough to detect signatures of biotic interactions, we find that most invaders are less related to their nearest relative in invaded plant communities than expected by chance (phylogenetic overdispersion). Yet at coarser spatial resolutions, native assemblages become more invasible for closely-related species as a consequence of habitat filtering (phylogenetic clustering). Recognition of the importance of the spatial resolution at which communities are studied allows apparently contrasting theoretical and empirical results to be reconciled. Our study opens new perspectives on how to better detect, differentiate and understand the impact of negative biotic interactions and habitat filtering on the ability of invaders to establish in native communities.

16.
Ecology ; 93(10): 2263-73, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23185887

RESUMO

Functional trait differences among species are increasingly used to infer the effects of biotic and abiotic processes on species coexistence. Commonly, the trait diversity observed within communities is compared to patterns simulated in randomly generated communities based on sampling within a region. The resulting patterns of trait convergence and divergence are assumed to reveal abiotic and biotic processes, respectively. However, biotic processes such as competition can produce both trait divergence and convergence, through either excluding similar species (niche differences, divergence) or excluding dissimilar species (weaker competitor exclusion, convergence). Hence, separating biotic and abiotic processes that can produce identical patterns of trait diversity, or even patterns that neutralize each other, is not feasible with previous methods. We propose an operational framework in which the functional trait dissimilarity within communities (FDcomm) is compared to the corresponding trait dissimilarity expected from the species pool (i.e., functional species pool diversity, FDpool). FDpool includes the set of potential species for a site delimited by the operating environmental and dispersal limitation filters. By applying these filters, the resulting pattern of trait diversity is consistent with biotic processes, i.e., trait divergence (FDcomm > FDpool) indicates niche differentiation, while trait convergence (FDcomm < FDpool) indicates weaker competitor exclusion. To illustrate this framework, with its potential application and constraints, we analyzed both simulated and field data. The functional species pool framework more consistently detected the simulated trait diversity patterns than previous approaches. In the field, using data from plant communities of typical Northern European habitats in Estonia, we found that both niche-based and weaker competitor exclusion influenced community assembly, depending on the traits and community considered. In both simulated and field data, we demonstrated that only by estimating the species pool of a site is it possible to differentiate the patterns of trait dissimilarity produced by operating biotic processes. The framework, which can be applied with both functional and phylogenetic diversity, enables a reinterpretation of community assembly processes. Solving the challenge of defining an appropriate reference species pool for a site can provide a better understanding of community assembly.


Assuntos
Ecossistema , Modelos Biológicos , Plantas/classificação , Animais , Estônia , Fenômenos Fisiológicos Vegetais , Especificidade da Espécie
17.
Curr Biol ; 32(9): 2093-2100.e3, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35334226

RESUMO

Taxonomic, functional, and phylogenetic diversities are important facets of biodiversity. Studying them together has improved our understanding of community dynamics, ecosystem functioning, and conservation values.1-3 In contrast to species, traits, and phylogenies, the diversity of biotic interactions has so far been largely ignored as a biodiversity facet in large-scale studies. This neglect represents a crucial shortfall because biotic interactions shape community dynamics, drive important aspects of ecosystem functioning,4-7 provide services to humans, and have intrinsic conservation value.8,9 Hence, the diversity of interactions can provide crucial and unique information with respect to other diversity facets. Here, we leveraged large datasets of trophic interactions, functional traits, phylogenies, and spatial distributions of >1,000 terrestrial vertebrate species across Europe at a 10-km resolution. We computed the diversity of interactions (interaction diversity [ID]) in addition to functional diversity (FD) and phylogenetic diversity (PD). After controlling for species richness, surplus and deficits of ID were neither correlated with FD nor with PD, thus representing unique and complementary information to the commonly studied facets of diversity. A three-dimensional mapping allowed for visualizing different combinations of ID-FD-PD simultaneously. Interestingly, the spatial distribution of these diversity combinations closely matched the boundaries between 10 European biogeographic regions and revealed new interaction-rich areas in the European Boreal region and interaction-poor areas in Central Europe. Our study demonstrates that the diversity of interactions adds new and ecologically relevant information to multifacetted, large-scale diversity studies with implications for understanding eco-evolutionary processes and informing conservation planning.


Assuntos
Biodiversidade , Ecossistema , Animais , Evolução Biológica , Humanos , Filogenia , Vertebrados
18.
Elife ; 112022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550673

RESUMO

Climate warming is releasing carbon from soils around the world, constituting a positive climate feedback. Warming is also causing species to expand their ranges into new ecosystems. Yet, in most ecosystems, whether range expanding species will amplify or buffer expected soil carbon loss is unknown. Here, we used two whole-community transplant experiments and a follow-up glasshouse experiment to determine whether the establishment of herbaceous lowland plants in alpine ecosystems influences soil carbon content under warming. We found that warming (transplantation to low elevation) led to a negligible decrease in alpine soil carbon content, but its effects became significant and 52% ± 31% (mean ± 95% confidence intervals) larger after lowland plants were introduced at low density into the ecosystem. We present evidence that decreases in soil carbon content likely occurred via lowland plants increasing rates of root exudation, soil microbial respiration, and CO2 release under warming. Our findings suggest that warming-induced range expansions of herbaceous plants have the potential to alter climate feedbacks from this system, and that plant range expansions among herbaceous communities may be an overlooked mediator of warming effects on carbon dynamics.


In a terrestrial ecosystem, the carbon cycle primarily represents the balance between plants consuming carbon dioxide from the atmosphere and soil microbes releasing carbon stored in the soil into the atmosphere (mostly as carbon dioxide). Given that carbon dioxide traps heat in the atmosphere, the balance of carbon inputs and outputs from an ecosystem can have important consequences for climate change. Rising temperatures caused by climate warming have led plants from lowland ecosystems to migrate uphill and start growing in alpine ecosystems, where temperatures are lower and most carbon is stored in the soil. Soil microbes use carbon stored in the soil and exuded from plants to grow, and they release this carbon ­ in the form of carbon dioxide ­ into the atmosphere through respiration. Walker et al. wanted to know how the arrival of lowland plants in alpine ecosystems under climate warming would affect carbon stores in the soil. To answer this question, Walker et al. simulated warmer temperatures by moving turfs (plants and soil) from alpine ecosystems to a warmer downhill site and planting lowland plants into the turfs. They compared the concentration of soil carbon in these turfs to that of soil in alpine turfs that had not been moved downhill and had no lowland plants. Their results showed that the warmed turfs containing lowland plants had a lower concentration of soil carbon. This suggests that climate warming will lead to more soil carbon being released into the atmosphere if lowland plants also migrate into alpine ecosystems. Walker et al. also wanted to know the mechanism through which lowland plants were decreasing soil carbon concentration under warming. They find that lowland plants probably release more small molecules into the soil than alpine plants. Soil microbes use the carbon and nutrients in these molecules to break down more complex molecules in the soil, thereby releasing nutrients and carbon that can then be used in respiration. This finding suggests that soil microbes breakdown and respire native soil carbon faster in the presence of lowland plants, releasing more carbon dioxide into the atmosphere and reducing carbon stores in the soil. Walker et al.'s results reveal a new mechanism through which uphill migration of lowland plants could increase the effects of climate change, in a feedback loop. Further research as to whether this mechanism occurs in different regions and ecosystems could help to quantify the magnitude of this feedback and allow scientists to make more accurate predictions about climate change.


Assuntos
Ecossistema , Solo , Carbono , Mudança Climática , Plantas , Microbiologia do Solo
19.
Trends Ecol Evol ; 36(5): 391-401, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33618936

RESUMO

Explaining and modeling species communities is more than ever a central goal of ecology. Recently, joint species distribution models (JSDMs), which extend species distribution models (SDMs) by considering correlations among species, have been proposed to improve species community analyses and rare species predictions while potentially inferring species interactions. Here, we illustrate the mathematical links between SDMs and JSDMs and their ecological implications and demonstrate that JSDMs, just like SDMs, cannot separate environmental effects from biotic interactions. We provide a guide to the conditions under which JSDMs are (or are not) preferable to SDMs for species community modeling. More generally, we call for a better uptake and clarification of novel statistical developments in the field of biodiversity modeling.


Assuntos
Biodiversidade , Clima , Ecologia , Modelos Biológicos
20.
Sci Rep ; 11(1): 15054, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301993

RESUMO

The increasing severity and frequency of natural disturbances requires a better understanding of their effects on all compartments of biodiversity. In Northern Fennoscandia, recent large-scale moth outbreaks have led to an abrupt change in plant communities from birch forests dominated by dwarf shrubs to grass-dominated systems. However, the indirect effects on the belowground compartment remained unclear. Here, we combined eDNA surveys of multiple trophic groups with network analyses to demonstrate that moth defoliation has far-reaching consequences on soil food webs. Following this disturbance, diversity and relative abundance of certain trophic groups declined (e.g., ectomycorrhizal fungi), while many others expanded (e.g., bacterivores and omnivores) making soil food webs more diverse and structurally different. Overall, the direct and indirect consequences of moth outbreaks increased belowground diversity at different trophic levels. Our results highlight that a holistic view of ecosystems improves our understanding of cascading effects of major disturbances on soil food webs.


Assuntos
Biodiversidade , Ecossistema , Cadeia Alimentar , Mariposas/efeitos dos fármacos , Animais , Betula/efeitos dos fármacos , Desfolhantes Químicos/efeitos adversos , Poluição Ambiental/efeitos adversos , Micorrizas/efeitos dos fármacos , Poaceae/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa