Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 624(7991): 282-288, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092911

RESUMO

Miniaturized lasers play a central role in the infrastructure of modern information society. The breakthrough in laser miniaturization beyond the wavelength scale has opened up new opportunities for a wide range of applications1-4, as well as for investigating light-matter interactions in extreme-optical-field localization and lasing-mode engineering5-19. An ultimate objective of microscale laser research is to develop reconfigurable coherent nanolaser arrays that can simultaneously enhance information capacity and functionality. However, the absence of a suitable physical mechanism for reconfiguring nanolaser cavities hinders the demonstration of nanolasers in either a single cavity or a fixed array. Here we propose and demonstrate moiré nanolaser arrays based on optical flatbands in twisted photonic graphene lattices, in which coherent nanolasing is realized from a single nanocavity to reconfigurable arrays of nanocavities. We observe synchronized nanolaser arrays exhibiting high spatial and spectral coherence, across a range of distinct patterns, including P, K and U shapes and the Chinese characters '' and '' ('China' in Chinese). Moreover, we obtain nanolaser arrays that emit with spatially varying relative phases, allowing us to manipulate emission directions. Our work lays the foundation for the development of reconfigurable active devices that have potential applications in communication, LiDAR (light detection and ranging), optical computing and imaging.

2.
Nature ; 581(7809): 401-405, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461649

RESUMO

Plasmonics enables the manipulation of light beyond the optical diffraction limit1-4 and may therefore confer advantages in applications such as photonic devices5-7, optical cloaking8,9, biochemical sensing10,11 and super-resolution imaging12,13. However, the essential field-confinement capability of plasmonic devices is always accompanied by a parasitic Ohmic loss, which severely reduces their performance. Therefore, plasmonic materials (those with collective oscillations of electrons) with a lower loss than noble metals have long been sought14-16. Here we present stable sodium-based plasmonic devices with state-of-the-art performance at near-infrared wavelengths. We fabricated high-quality sodium films with electron relaxation times as long as 0.42 picoseconds using a thermo-assisted spin-coating process. A direct-waveguide experiment shows that the propagation length of surface plasmon polaritons supported at the sodium-quartz interface can reach 200 micrometres at near-infrared wavelengths. We further demonstrate a room-temperature sodium-based plasmonic nanolaser with a lasing threshold of 140 kilowatts per square centimetre, lower than values previously reported for plasmonic nanolasers at near-infrared wavelengths. These sodium-based plasmonic devices show stable performance under ambient conditions over a period of several months after packaging with epoxy. These results indicate that the performance of plasmonic devices can be greatly improved beyond that of devices using noble metals, with implications for applications in plasmonics, nanophotonics and metamaterials.

3.
Chem Biodivers ; : e202400792, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738487

RESUMO

In the current work, grifolin was obtained from the twigs and leaves of Daphne genkwa for the first time and displayed significant growth inhibition against human lung carcinoma A549 cells. Subsequent in vitro antitumor evaluation revealed that grifolin could induce remarkable cell apoptosis and G0/G1 phase arrest, as well as block cell migration and invasion. In addition, grifolin also disrupted cellular energy metabolism by inducing reactive oxygen species, reducing adenosine triphosphate and mitochondrial membrane potential, and damaging DNA synthesis. Further RNA-seq analysis demonstrated that treatment of grifolin on A549 cells led to gene enrichment in MAPK, PI3K/Akt and NF-κB signaling pathways, all of which were inhibited by grifolin according to immunoblotting experiments. Further mechanistical studies disclosed that the expression of a key upstream protein KRAS was also blocked, and the cell death triggered by grifolin could be rescued by a RAS activator ML-099. Moreover, pretreatment of ML-099 on A549 cells could reverse the grifolin-induced downregulation of key proteins in the three aforementioned pathways. These findings indicate that grifolin could induce cell death in A549 cell line by inhibiting KRAS-mediated multiple signaling pathways.

4.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731870

RESUMO

Transcranial magneto-acoustic stimulation (TMAS), which is characterized by high spatiotemporal resolution and high penetrability, is a non-invasive neuromodulation technology based on the magnetic-acoustic coupling effect. To reveal the effects of TMAS treatment on amyloid-beta (Aß) plaque and synaptic plasticity in Alzheimer's disease, we conducted a comparative analysis of TMAS and transcranial ultrasound stimulation (TUS) based on acoustic effects in 5xFAD mice and BV2 microglia cells. We found that the TMAS-TUS treatment effectively reduced amyloid plaque loads and plaque-associated neurotoxicity. Additionally, TMAS-TUS treatment ameliorated impairments in long-term memory formation and long-term potentiation. Moreover, TMAS-TUS treatment stimulated microglial proliferation and migration while enhancing the phagocytosis and clearance of Aß. In 5xFAD mice with induced microglial exhaustion, TMAS-TUS treatment-mediated Aß plaque reduction, synaptic rehabilitation improvement, and the increase in phospho-AKT levels were diminished. Overall, our study highlights that stimulation of hippocampal microglia by TMAS treatment can induce anti-cognitive impairment effects via PI3K-AKT signaling, providing hope for the development of new strategies for an adjuvant therapy for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Microglia , Placa Amiloide , Animais , Microglia/metabolismo , Camundongos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Estimulação Magnética Transcraniana/métodos , Estimulação Acústica , Camundongos Transgênicos , Modelos Animais de Doenças , Sinapses/metabolismo , Hipocampo/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Plasticidade Neuronal , Potenciação de Longa Duração , Transdução de Sinais
5.
Mol Psychiatry ; 27(11): 4464-4473, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948661

RESUMO

Common variation in the gene encoding the neuron-specific RNA splicing factor RNA Binding Fox-1 Homolog 1 (RBFOX1) has been identified as a risk factor for several psychiatric conditions, and rare genetic variants have been found causal for autism spectrum disorder (ASD). Here, we explored the genetic landscape of RBFOX1 more deeply, integrating evidence from existing and new human studies as well as studies in Rbfox1 knockout mice. Mining existing data from large-scale studies of human common genetic variants, we confirmed gene-based and genome-wide association of RBFOX1 with risk tolerance, major depressive disorder and schizophrenia. Data on six mental disorders revealed copy number losses and gains to be more frequent in ASD cases than in controls. Consistently, RBFOX1 expression appeared decreased in post-mortem frontal and temporal cortices of individuals with ASD and prefrontal cortex of individuals with schizophrenia. Brain-functional MRI studies demonstrated that carriers of a common RBFOX1 variant, rs6500744, displayed increased neural reactivity to emotional stimuli, reduced prefrontal processing during cognitive control, and enhanced fear expression after fear conditioning, going along with increased avoidance behaviour. Investigating Rbfox1 neuron-specific knockout mice allowed us to further specify the role of this gene in behaviour. The model was characterised by pronounced hyperactivity, stereotyped behaviour, impairments in fear acquisition and extinction, reduced social interest, and lack of aggression; it provides excellent construct and face validity as an animal model of ASD. In conclusion, convergent translational evidence shows that common variants in RBFOX1 are associated with a broad spectrum of psychiatric traits and disorders, while rare genetic variation seems to expose to early-onset neurodevelopmental psychiatric disorders with and without developmental delay like ASD, in particular. Studying the pleiotropic nature of RBFOX1 can profoundly enhance our understanding of mental disorder vulnerability.


Assuntos
Transtorno do Espectro Autista , Transtorno Depressivo Maior , Transtornos Mentais , Animais , Camundongos , Humanos , Transtorno do Espectro Autista/genética , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Camundongos Knockout , Fatores de Processamento de RNA/genética
6.
Inorg Chem ; 62(49): 20401-20411, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38073496

RESUMO

Merging metal-organic frameworks (MOFs) and polyoxometalates (POMs) into heterogeneous heterojunction photocatalysts through in situ encapsulation is an effective approach to suppress the leachability of POMs and enhance their electron supply. The heterointerfacial connection in POMs@MOFs directly determines the performance of stability and charge separation, and the suited interaction between MOFs and POMs for POMs@MOFs heterojunctions photocatalyst is of vital importance. Here, a distinctive Keggin-type POM [(n-C4H9)N]10[SiW9Co3 (H2O)3O37]·17H2O (SiW9Co3) with near-total visible region absorption, narrow band gap of 2.23 eV, and powerful electron supply activity was prepared and tightly immobilized in the cavities of UiO-67-NH2 and UiO-68-NH2 to construct two Z-scheme heterojunctions SiW9Co3@UiO-67-NH2 and SiW9Co3@UiO-68-NH2, which were used for photocatalytic reduction of CO2 to CO. Their compositions, structures, and energy band features were fully characterized by a series of tests including XRD, FT-IR, SEM, XPS, UV-vis-DRS, UPS, and so forth. SiW9Co3@UiO-67-NH2 showed optimal photocatalytic performance with an excellent CO yield of 153.3 µmol-1·g-1·h-1 and a selectivity of 100%, which is 3.3-fold higher than that of SiW9Co3@UiO-68-NH2 and far superior to most reported POM-based heterojunctions. Comprehensive investigations with extensive photoelectric characterizations and microcalorimetric experiments demonstrated that the exceptional photocatalytic performances of SiW9Co3@UiO-67-NH2 could be attributed to the fact that (i) strong host-guest interactions were formed due to the well-matched dimensions between SiW9Co3 cluster and MOF cavity, which generated an intimate heterointerface to effectively accelerate interface electron transfer; (ii) the intimate heterointerface promoted SiW9Co3 to yield multielectron supply for efficient interfacial carrier neutralization owing to its donor-acceptor structure and narrow band gap. Additionally, the excellent durability of SiW9Co3@UiO-67-NH2 was also supported by the solidly locked SiW9Co3 and a stable MOF framework.

7.
Inorg Chem ; 62(20): 7954-7963, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37154624

RESUMO

Efficient charge transfer has always been a challenge in heterogeneous MOF-based photoredox catalysis due to the poor electrical conductivity of the MOF photocatalyst, the toilless electron-hole recombination, and the uncontrollable host-guest interactions. Herein, a propeller-like tris(3'-carboxybiphenyl)amine (H3TCBA) ligand was synthesized to fabricate a 3D Zn3O cluster-based Zn(II)-MOF photocatalyst, Zn3(TCBA)2(µ3-H2O)H2O (Zn-TCBA), which was applied to efficient photoreductive H2 evolution and photooxidative aerobic cross-dehydrogenation coupling reactions of N-aryl-tetrahydroisoquinolines and nitromethane. In Zn-TCBA, the ingenious introduction of the meta-position benzene carboxylates on the triphenylamine motif not only promotes Zn-TCBA to exhibit a broad visible-light absorption with a maximum absorption edge of 480 nm but also causes special phenyl plane twists with dihedral angles of 27.8-45.8° through the coordination to Zn nodes. The semiconductor-like Zn clusters and the twisted TCBA3- antenna with multidimensional π interaction sites facilitate photoinduced electron transfer to render Zn-TCBA a good photocatalytic H2 evolution efficiency of 27.104 mmol·g-1·h-1 in the presence of [Co(bpy)3]Cl2 under visible-light illumination, surpassing many non-noble-metal MOF systems. Moreover, the positive enough excited-state potential of 2.03 V and the semiconductor-like characteristics of Zn-TCBA endow Zn-TCBA with double oxygen activation ability for photocatalytic oxidation of N-aryl-tetrahydroisoquinoline substrates with a yield up to 98.7% over 6 h. The durability of Zn-TCBA and the possible catalytic mechanisms were also investigated by a series of experiments including PXRD, IR, EPR, and fluorescence analyses.

8.
Bioorg Chem ; 140: 106803, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659144

RESUMO

Phytochemical investigation into the leaves and branches of Daphne genkwa afforded 25 meroterpenoids (1-16) including nine pairs of enantiomers (1a/1b-8a/8b and 12a/12b), among which 20 compounds have been reported in the present work for the first time. The structures with absolute configurations of the new molecules (excluding 10-13) were established via comprehensive spectroscopic analyses especially electronic circular dichroism (ECD) and Mosher's methods. A preliminary in vitro cell viability assay revealed remarkable cytotoxicities of selective compounds against A549 (lung), Hela (cervical), MDA-MB231 (breast) and MCF-7 (breast) cancer cells, and compound 8a showed the best inhibitory activity with IC50 values in the range of 3.12-4.67 µM toward the four cell lines. Subsequent in vitro antitumor evaluation of 8a disclosed that it could inhibit the proliferation and metastasis, as well as induce significant apoptosis and cycle arrest, of A549 cells. Further mechanistic investigations revealed that 8a could exert its antitumor activity via inhibiting the PI3K/Akt/mTOR signaling pathway.


Assuntos
Daphne , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Células A549 , Serina-Treonina Quinases TOR , Células HeLa , Transdução de Sinais
9.
Chem Biodivers ; 20(10): e202301203, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37679302

RESUMO

Chemical fractionation of the AcOEt partition, generated from the EtOH extract of the fruits of Schisandra chinensis, afforded a series of sesquiterpenyl constituents including two new cadinanes, a new eudesmane, two new widdranes (a handling artefact and a new natural product), a new bisabolane and two new natural cuparane enantiomers, along with 15 known structurally related analogs. Structures of the new compounds were unambiguously characterized by interpretation of detailed spectroscopic data including ESI-MS and 1D/2D NMR, with their absolute configurations being established by electronic circular dichroism (ECD) calculation and induced ECD experiment. The inhibitory effects of all the isolates against α-glucosidase and lipopolysaccharide (LPS) induced nitric oxide (NO) production in murine RAW264.7 macrophages, as well as their antibacterial and cytotoxic potential, were evaluated, with selective compounds showing moderate α-glucosidase and NO inhibitory activity. Notably, canangaterpene III exhibited the most significant NO inhibitory effect with an IC50 value of 31.50±1.49 µM.

10.
New Phytol ; 236(2): 714-728, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35811425

RESUMO

Hemiepiphytic figs killing their host trees is an ecological process unique to the tropics. Yet the benefits and adaptive strategies of their special life history remain poorly understood. We compared leaf phosphorus (P) content data of figs and palms worldwide, and functional traits and substrate P content of hemiepiphytic figs (Ficus tinctoria), their host palm and nonhemiepiphytic conspecifics at different growth stages in a common garden. We found that leaf P content of hemiepiphytic figs and their host palms significantly decreased when they were competing for soil resources, but that of hemiepiphytic figs recovered after host death. P availability in the canopy humus and soil decreased significantly with the growth of hemiepiphytic figs. Functional trait trade-offs of hemiepiphytic figs enabled them to adapt to the P shortage while competing with their hosts. From the common garden to a global scale, the P competition caused by high P demand of figs may be a general phenomenon. Our results suggest that P competition is an important factor causing host death, except for mechanically damaging and shading hosts. Killing hosts benefits hemiepiphytic figs by reducing interspecific P competition and better acquiring P resources in the P-deficient tropics, thereby linking the life history strategy of hemiepiphytic figs to the widespread P shortage in tropical soils.


Assuntos
Ficus , Vespas , Animais , Fósforo , Folhas de Planta , Solo , Árvores
11.
Inorg Chem ; 61(19): 7484-7496, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35511935

RESUMO

Due to the inherent thermodynamic stability and kinetic inertness of CO2, heterogeneous catalytic conversion of CO2 to cyclic carbonates often requires harsh operating conditions, high temperature and high pressure, and the addition of cocatalysts. Therefore, the development of efficient heterogeneous catalysts under cocatalyst-free and mild conditions for CO2 conversion has always been a challenge. Herein, an infrequent tetracoordinated Cd-MOF was synthesized and used to catalyze CO2 cycloaddition reactions efficiently without the addition of any cocatalyst, and its catalytic mechanism was systematically investigated through a series of experiments, including fluorescence analysis, X-ray photoelectron spectroscopy, microcalorimetry, and density functional theory (DFT) calculation. Cd-MOF features a 3D supermolecule structure with 1D 11.6 × 7.7 Å2 channels, and the abundant Lewis acid/base and I- sites located in the confined channel boost efficient CO2 conversion with a maximum yield of 98.2% and a turnover number value of 1080.11 at 60 °C and 0.5 MPa, far surpassing most pristine MOF-based catalytic systems. A combined experimental and DFT calculation demonstrates that the exposed Cd(II) Lewis acid sites rapidly participate in coordination to activate the epoxides, and the resulting large steric hindrance facilitates leaving of the coordinated iodide ions in a reversibly dynamic fashion convenient for the rate-determining step ring-opening as a strong nucleophile. Such a pristine MOF catalyst with self-independent catalytic ring-opening overcomes the complicated operation limitation of the traditional cocatalyst-free MOF systems based on encapsulating/postmodifying cocatalysts, providing a whole new strategy for the development of simple, green, and efficient heterogeneous catalysts for CO2 cycloaddition.

12.
Environ Res ; 212(Pt B): 113297, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35436453

RESUMO

Meteorological factors have been confirmed to affect the COVID-19 transmission, but current studied conclusions varied greatly. The underlying causes of the variance remain unclear. Here, we proposed two scientific questions: (1) whether meteorological factors have a consistent influence on virus transmission after combining all the data from the studies; (2) whether the impact of meteorological factors on the COVID-19 transmission can be influenced by season, geospatial scale and latitude. We employed a meta-analysis to address these two questions using results from 2813 published articles. Our results showed that, the influence of meteorological factors on the newly-confirmed COVID-19 cases varied greatly among existing studies, and no consistent conclusion can be drawn. After grouping outbreak time into cold and warm seasons, we found daily maximum and daily minimum temperatures have significant positive influences on the newly-confirmed COVID-19 cases in cold season, while significant negative influences in warm season. After dividing the scope of the outbreak into national and urban scales, relative humidity significantly inhibited the COVID-19 transmission at the national scale, but no effect on the urban scale. The negative impact of relative humidity, and the positive impacts of maximum temperatures and wind speed on the newly-confirmed COVID-19 cases increased with latitude. The relationship of maximum and minimum temperatures with the newly-confirmed COVID-19 cases were more susceptible to season, while relative humidity's relationship was more affected by latitude and geospatial scale. Our results suggested that relationship between meteorological factors and the COVID-19 transmission can be affected by season, geospatial scale and latitude. A rise in temperature would promote virus transmission in cold seasons. We suggested that the formulation and implementation of epidemic prevention and control should mainly refer to studies at the urban scale. The control measures should be developed according to local meteorological properties for individual city.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Conceitos Meteorológicos , SARS-CoV-2 , Estações do Ano , Temperatura
13.
Eur Child Adolesc Psychiatry ; 31(4): 601-613, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398650

RESUMO

Childhood maltreatment (CM) poses a serious risk to the physical, emotional and psychological well-being of children, and can advance the development of maladaptive behaviors, including conduct disorder (CD). CD involves repetitive, persistent violations of others' basic rights and societal norms. Little is known about whether and how CM influences the neural mechanisms underlying CD, and CD-characteristic neuroanatomical changes have not yet been defined in a structural magnetic resonance imaging (sMRI) study. Here, we used voxel-based morphometry (VBM) and surface-based morphometry (SBM) to investigate the influence of the CD diagnosis and CM on the brain in 96 boys diagnosed with CD (62 with CM) and 86 typically developing (TD) boys (46 with CM). The participants were 12-17 years of age. Compared to the CM- CD group, the CM+ CD group had structural gray matter (GM) alterations in the fronto-limbic regions, including the left amygdala, right posterior cingulate cortex (PCC), right putamen, right dorsolateral prefrontal cortex (dlPFC) and right anterior cingulate cortex (ACC). We also found boys with CD exhibited increased GM volume in bilateral dorsomedial prefrontal cortex (dmPFC), as well as decreased GM volume and decreased gyrification in the left superior temporal gyrus (STG) relative to TD boys. Regional GM volume correlated with aggression and conduct problem severity in the CD group, suggesting that the GM changes may contribute to increased aggression and conduct problems in boys with CD who have suffered CM. In conclusion, these results demonstrate previously unreported CM-associated distinct brain structural changes among CD-diagnosed boys.


Assuntos
Maus-Tratos Infantis , Transtorno da Conduta , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Córtex Cerebral/patologia , Criança , Transtorno da Conduta/diagnóstico por imagem , Transtorno da Conduta/patologia , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/patologia
14.
Yi Chuan ; 44(7): 545-555, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858767

RESUMO

The causative gene family of Parkinson's disease, PARK, plays important roles in the regulation of skeletal myopathy and is also involved in multiple biological processes, such as the modification of motor neurons, the transmission of nerve signals at the nerve-muscle junction, the regulation of skeletal muscle energy metabolism and mitochondrial quality, and the expression of myogenesis factors. PARK gene family regulates skeletal muscle mass, functions through a multi-level regulatory system, and plays a key role in the occurrence and development of skeletal myopathy. In this review, we summarize the structural characteristics, functions, and research of the PARK gene family in skeletal myopathy, providing a theoretical foundation and future research direction for in-depth study of the molecular mechanism for skeletal myopathy and giving references to further study on the role of PARK family in the development, the pathology, clinical diagnosis, and treatment of skeletal myopathy.


Assuntos
Doenças Musculares , Metabolismo Energético , Humanos , Músculo Esquelético/metabolismo , Doenças Musculares/genética
15.
Cancer Cell Int ; 21(1): 281, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044823

RESUMO

BACKGROUND: Systematic profiling studies have implicated regulators of pre-mRNA splicing as important disease determinants in gastric cancer (GC), but the underlying mechanisms have remained elusive. Here we focused on hnRNPA2B1 splicing factor-dependent mechanisms governing GC development. METHODS: The expression of hnRNPA2B1 was analyzed among the Cancer Genome Atlas (TCGA) datasets of GC and validated at mRNA level. The function of hnRNPA2B1 in GC cells was analyzed and its downstream gene was identified using RNA immunoprecipitation. Further, effect of hnRNPA2B1 on BIRC5 alternative splicing was investigated. RESULTS: We show that overexpression of hnRNPA2B1 in GC is correlated with poor survival, and hnRNPA2B1 is required for maintaining GC malignant phenotype by promoting cell proliferation, inhibiting cell apoptosis and increasing cell metastasis. Mechanistically, hnRNPA2B1 co-expressed with several core spliceosome components and controls alternative splicing of anti-apoptotic factor BIRC5. BIRC5 isoform 202 (BIRC5-202) played the oncogenic function in GC cells, and overexpression of the BIRC5-202 transcript partly rescued the decrease in cisplatin resistance induced by downregulation of hnRNPA2B1. CONCLUSIONS: We demonstrate that hnRNPA2B1 regulates BIRC5 splicing and might act as a therapeutic target of chemo-resistant GC cells.

16.
J Appl Toxicol ; 41(11): 1826-1838, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33759202

RESUMO

2-isopropyl-N,2,3-trimethylbutyramide (WS-23) is a well-known artificial synthesis cooling agent widely used in foods, medicines, and tobaccos. As a commonly cooling agent in e-cigarette liquids, WS-23 has led to concerns about the inhalation toxicity with the prosperous of e-cigarettes in recent years. Thus, the aim of this study is to assess the acute and subacute inhalation toxicity of WS-23 in Sprague-Dawley (SD) rats according to the Organization for Economic Cooperation and Development (OECD) guidelines. In the acute toxicity study, there was no mortality and behavioral signs of toxicity at the limit test dose level (340.0 mg/m3 ) in the exposure period and the following 14-day observation period. In the subacute inhalation toxicity study, there was no significant difference observed in the body weights, feed consumption, and relative organ weights. Haematological, serum biochemical, urine, and bronchoalveolar lavage fluid (BALF) analysis revealed the non-adverse effects after 28-day repeated WS-23 inhalation (342.85 mg/m3 ), accompanied by slight changes in few parameters which returned to normal during the 28-day recovery period. The histopathologic examination also did not show any differences in vital organs. In conclusion, the maximum tolerated dose for WS-23 acute inhalation is not less than 340.0 mg/m3 , and the No Observed Adverse Effect Level (NOAEL) of WS-23 subacute inhalation was determined to be over 342.85 mg/m3 .


Assuntos
Amidas/toxicidade , Exposição por Inalação , Animais , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Organismos Livres de Patógenos Específicos , Testes de Toxicidade Aguda , Testes de Toxicidade Subaguda
17.
Nano Lett ; 20(10): 7144-7151, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32941049

RESUMO

Flexible optoelectronic devices attract considerable attention due to their prominent role in creating novel wearable apparatus for bionics, robotics, health care, and so forth. Although bulk single-crystalline perovskite-based materials are well-recognized for the high photoelectric conversion efficiency than the polycrystalline ones, their stiff and brittle nature unfortunately prohibits their application for flexible devices. Here, we introduce ultrathin single-crystalline perovskite film as the active layer and demonstrate a high-performance flexible photodetector with prevailing bending reliability. With a much-reduced thickness of 20 nm, the photodetector made of this ultrathin film can achieve a significantly increased responsivity as 5600A/W, 2 orders of magnitude higher than that of recently reported flexible perovskite photodetectors. The demonstrated 0.2 MHz 3 dB bandwidth further paves the way for high-speed photodetection. Notably, all its optoelectronic characteristics resume after being bent over thousands of times. These results manifest the great potential of single-crystalline perovskite ultrathin films for developing wearable and flexible optoelectronic devices.

18.
Nano Lett ; 20(6): 4645-4652, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32364394

RESUMO

A single photon in a strongly nonlinear cavity is able to block the transmission of a second photon, thereby converting incident coherent light into antibunched light, which is known as the photon blockade effect. Photon antipairing, where only the entry of two photons is blocked and the emission of bunches of three or more photons is allowed, is based on an unconventional photon blockade mechanism due to destructive interference of two distinct excitation pathways. We propose quantum plexcitonic systems with moderate nonlinearity to generate both antibunched and antipaired photons. The proposed plexcitonic systems benefit from subwavelength field localizations that make quantum emitters spatially distinguishable, thus enabling a reconfigurable photon source between antibunched and antipaired states via tailoring the energy bands. For a realistic nanoprism plexcitonic system, chemical and optical schemes of reconfiguration are demonstrated. These results pave the way to realize reconfigurable nonclassical photon sources in a simple quantum plexcitonic platform.

19.
Phys Rev Lett ; 125(1): 013903, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678624

RESUMO

Spin-momentum locking is a direct consequence of bulk topological order and provides a basic concept to control a carrier's spin and charge flow for new exotic phenomena in condensed matter physics. However, up to date the research on spin-momentum locking solely focuses on its in-plane transport properties. Here, we report an emerging out-of-plane radiation feature of spin-momentum locking in a non-Hermitian topological photonic system and demonstrate a high performance topological vortex laser based on it. We find that the gain saturation effect lifts the degeneracy of the paired counterpropagating spin-momentum-locked edge modes enabling lasing from a single topological edge mode. The near-field spin and orbital angular momentum of the topological edge mode lasing has a one-to-one far-field radiation correspondence. The methodology of probing the near-field topology feature by far-field lasing emission can be used to study other exotic phenomena. The device can lead to applications in superresolution imaging, optical tweezers, free-space optical sensing, and communication.

20.
Zhongguo Zhong Yao Za Zhi ; 45(11): 2720-2724, 2020 Jun.
Artigo em Zh | MEDLINE | ID: mdl-32627509

RESUMO

Chronic heart failure(CHF), a serious and end stage of various heart diseases, is a common chronic cardiovascular disease in the 21 st century. Literature data show that the 5-year mortality rate of hospitalized patients with heart failure is as high as 50%. Nowadays, the development of drugs treating heart failure has become a hot spot, meanwhile, traditional Chinese medicine(TCM) has shown the advantages in the treatment of chronic heart failure. In this article, four stages to develop traditional Chinese medicine for chronic heart failure were proposed. Firstly, discuss and screen ideas and methods with regard to the development of TCM and its prescriptions based on clinical needs. Secondly, study the preparation process and quality control method by referring to the existing clinical background of TCM prescriptions and analyzing the chemical compositions and pharmacological action characteristics of each herb in the prescription. Then, design non-clinical evaluation programs and carry out researches on pharmacodynamics and toxicology by combining the experience of clinical use of TCM prescriptions and future clinical positioning, and gradually adjust and improve the programs during implementation. Finally, conduct clinical trial application(IND) by submitting registration application data which are base on the clinical drug experience, preclinical research pharmacy, main pharmacodynamics, safety test results of the prescription, clinical positioning, and reasonable clinical trial plan designed by the theory of TCM. After passing the IND technical review, the clinical trial study shall be officially launched to achieve the desired results and obtain effective Chinese patent medicines for heart failure treatment.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Doença Crônica , Humanos , Medicina Tradicional Chinesa , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa