RESUMO
BACKGROUND: Stuttering affects approximately 5% of children; however, its neurological basis remains unclear. Identifying imaging biomarkers could aid in early detection. Accordingly, we investigated resting-state cerebral blood flow (CBF) in children with developmental stuttering. METHODS: Pulsed arterial spin labelling magnetic resonance imaging was utilised to quantify CBF in 35 children with developmental stuttering and 27 healthy controls. We compared normalised CBF between the two groups and evaluated the correlation between abnormal CBF and clinical indicators. RESULTS: Compared with healthy controls, the stuttering group exhibited decreased normalised CBF in the cerebellum lobule VI bilaterally, right cuneus, and left superior occipital gyrus and increased CBF in the right medial superior frontal gyrus, left rectus, and left dorsolateral superior frontal gyrus. Additionally, normalised CBF in the left cerebellum lobule VI and left superior occipital gyrus was positively correlated with stuttering severity. CONCLUSIONS: Children who stutter display decreased normalised CBF primarily in the cerebellum and occipital gyrus, with increased normalised CBF in the frontal gyrus. Additionally, the abnormal CBF in the left cerebellum lobule VI and left superior occipital gyrus was associated with more severe symptoms, suggesting that decreased CBF in these areas may serve as a novel neuroimaging clue for stuttering. IMPACT: Stuttering occurs in 5% of children and often extends into adulthood, which may negatively affect quality of life. Early detection and treatment are essential. We used pulsed arterial spin labelling magnetic resonance imaging to visualise the resting-state cerebral blood flow (CBF) in children who stutter and healthy children. Normalised CBF was decreased in stutterers in the cerebellum and occipital gyrus and increased in the frontal gyrus. Stuttering severity was linked to abnormal normalised CBF in the left cerebellum lobule VI and left superior occipital gyrus, suggesting that CBF may serve as a novel neuroimaging clue for stuttering.
RESUMO
BACKGROUND: Menkes disease (MD) is a rare, inherited, multisystemic copper metabolism disorder. Classical Menkes disease is characterized by low serum copper and ceruloplasmin concentrations, leading to multiple abnormalities in the whole-body, especially in connective tissue and central nervous system. However, serum copper and ceruloplasmin levels are not reliable diagnostic biomarkers due to the low concentrations in healthy newborns either. The featured imaging manifestations play an important role in diagnosing Menkes disease. To our knowledge, there are few reports on the systemic imaging manifestations of Menkes disease. CASE PRESENTATION: A 4-month-old male patient presented with recurrent seizures. He had cognitive, intellectual, growth, gross motor, precision movement, and language developmental lags. The patient's hemoglobin and serum ceruloplasmin level were low. On MRI, increased intracranial vascular tortuosity, cerebral and cerebellar atrophy, white matter changes, and basal ganglia abnormalities were observed. Plain radiograph revealed wormian bones, rib flaring, metaphyseal spurring, and periosteal reactions in the long bones of the limbs. A pathogenic variant in ATP7A gene was identified in the patient, so he was confirmed the diagnosis of Menkes disease. His symptoms did not improve despite symptomatic and supportive treatment during his hospitalization. Unfortunately, the infant died 3 months after leaving hospital. CONCLUSION: A comprehensive and intuitive understanding of the disease's imaging manifestations can help clinicians to identify the disease and avoid delays in care.
Assuntos
Imageamento por Ressonância Magnética , Síndrome dos Cabelos Torcidos , Humanos , Síndrome dos Cabelos Torcidos/diagnóstico , Síndrome dos Cabelos Torcidos/diagnóstico por imagem , Masculino , Lactente , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem Corporal Total , Osso e Ossos/diagnóstico por imagemRESUMO
BACKGROUND: Children with spinal muscular atrophy (SMA) are at risk of low bone mineral density (BMD) and bone fragility. This study aims to assess lumbar spine BMD measured by quantitative computed tomography (QCT) and investigate influencing factors of low BMD in children with SMA without disease-modifying treatment. METHODS: Demographic data, laboratory parameters, QCT data, and data on spinal radiographs were collected. A linear regression model was carried out to explore the correlations between BMD and its related factors. RESULTS: Sixty-six patients with SMA who had complete records between July 2017 and July 2023 were analyzed, with SMA with a mean age of 5.4 years (range, 2.4-9.7 years), including type 1 in 14, type 2 in 37, and type 3 in 15. 28.8% of patients (19/66) were diagnosed with low BMD (Z-scores ≤ - 2), and the mean BMD Z-scores on QCT was - 1.5 ± 1.0. In our model, BMD Z-scores was associated with age (ß=-0.153, p = 0.001). SMA phenotype and serum bone metabolism markers, such as serum phosphorus (P), alkaline phosphatase (ALP) and 25-Hydroxyvitamin D (25-OH-D) levels did not independently predict low BMD. ROC analysis showed that the age ≥ 6.3 years predicts a Z-scores ≤ -2.0 with a sensitivity of 68.4% and a specificity of 68.1%. CONCLUSIONS: Low BMD were highly prevalent in children with SMA without disease-modifying treatment in our centre. Regular monitoring of BMD is necessary for all types of SMA children, especially those aged ≥ 6.3 years.
Assuntos
Densidade Óssea , Atrofia Muscular Espinal , Humanos , Masculino , Feminino , Criança , Estudos Transversais , Pré-Escolar , Atrofia Muscular Espinal/fisiopatologia , Vértebras Lombares/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Estudos Retrospectivos , Biomarcadores/sangueRESUMO
OBJECTIVES: Cancer chemotherapy potentially increases the risk of myocardial ischemia. This study assessed myocardial microvascular function by cardiac magnetic resonance (CMR) first-pass perfusion in patients treated with chemotherapy for gynecologic malignancies. METHODS: A total of 81 patients treated with chemotherapy for gynecologic malignancies and 39 healthy volunteers were prospectively enrolled and underwent CMR imaging. Among the patients, 32 completed CMR follow-up, with a median interval of 6 months. The CMR sequences comprised cardiac cine, rest first-pass perfusion, and late gadolinium enhancement. RESULTS: There were no significant differences in the baseline characteristics between the patients and normal controls (all p > 0.05). Compared with the normal controls, the patients had a lower myocardial perfusion index (PI) (13.62 ± 2.01% vs. 12% (11 to 14%), p = 0.001) but demonstrated no significant variation with an increase in the number of chemotherapy cycles at follow-up (11.79 ± 2.36% vs. 11.19 ± 2.19%, p = 0.234). In multivariate analysis with adjustments for clinical confounders, a decrease in the PI was independently associated with chemotherapy treatment (ß = - 0.362, p = 0.002) but had no correlation with the number of chemotherapy cycles (r = - 0.177, p = 0.053). CONCLUSION: Myocardial microvascular dysfunction was associated with chemotherapy treatment in patients with gynecologic malignancies, and can be assessed and monitored by rest CMR first-pass perfusion. KEY POINTS: ⢠Chemotherapy was associated with but did not aggravate myocardial microvascular dysfunction in patients with gynecologic malignancies. ⢠Rest CMR first-pass perfusion is an ideal modality for assessing and monitoring alterations in myocardial microcirculation during chemotherapy treatment.
Assuntos
Cardiomiopatias , Neoplasias dos Genitais Femininos , Imagem de Perfusão do Miocárdio , Meios de Contraste , Circulação Coronária , Feminino , Gadolínio , Neoplasias dos Genitais Femininos/tratamento farmacológico , Humanos , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imagem de Perfusão do Miocárdio/métodos , Perfusão , Valor Preditivo dos TestesRESUMO
Tourette syndrome (TS) is a developmental neuropsychiatric disorder characterized by repetitive, stereotyped, involuntary tics, the neurological basis of which remains unclear. Although traditional resting-state MRI (rfMRI) studies have identified abnormal static functional connectivity (FC) in patients with TS, dynamic FC (dFC) remains relatively unexplored. The rfMRI data of 54 children with TS and 46 typically developing children (TDC) were analyzed using group independent component analysis to obtain independent components (ICs), and a sliding-window approach to generate dFC matrices. All dFC matrices were clustered into two reoccurring states, the state transition metrics were obtained. We conducted Granger causality and nodal topological analyses to further investigate the brain regions that may play the most important roles in driving whole-brain switching between different states. We found that children with TS spent more time in state 2 (PFDR < 0.001), a state characterized by strong connectivity between ICs, and switched more quickly between states (PFDR = 0.025) than TDC. The default mode network (DMN) may play an important role in abnormal state transitions because the FC that changed the most between the two states was between the DMN and other networks. Additionally, the DMN had increased degree centrality, efficiency and altered causal influence on other networks. Certain alterations related to executive function (r = -0.309, P < 0.05) and tic symptom ratings (r = 0.282; 0.413, P < 0.05) may represent important aspects of the pathophysiology of TS. These findings facilitate our understanding of the neural basis for the clinical presentation of TS.
Assuntos
Síndrome de Tourette , Criança , Humanos , Síndrome de Tourette/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Função Executiva , Comportamento EstereotipadoRESUMO
Background: Anaplastic lymphoma kinase (ALK)-positive histiocytosis is a rare type of histiocytosis that could affect multiple systems in children and adults. 10 cases of ALK-positive histiocytosis invading the central nervous system (CNS) have been reported. Herein, we report a case of ALK-positive histiocytosis invading the central nervous system and lungs and the details of follow-up of tumor dynamic changes during treatment. Case Presentation: An 18-month-old boy was underweight and had slow growth of almost 3 months duration. The child could not stand and walk independently, and his language and intelligence development occurred later than those of his peers. Cranial magnetic resonance imaging revealed a giant suprasellar lesion with isosignal, measuring approximately 5.1× 3.6× 4.0 cm on T1-weighted imaging, with an obvious mass effect. Nodular, slightly low-signal shadows were also observed in the left temporal pole and left hippocampus, measuring approximately 1.0 cm × 0.7 cm× 0.5 cm and 0.9 cm× 0.8 cm × 0.5 cm on T1-weighted, respectively. The child underwent partial resection of the suprasellar lesion, and a diagnosis of ALK-positive histiocytosis was made histologically. Subsequently, the patient received chemotherapy (CHOP regimen) and anti-ALK therapy (crizotinib). The lesions were gradually shrinking without dissemination and the changes of intracranial and lung lesions were monitored with imaging during therapy. Unfortunately, the child died 8 months after the first surgery because of worsening intracranial infection. Conclusion: ALK-positive histiocytosis may involve the central nervous system and disseminate intracranially. ALK-positive histiocytosis should be considered for the differential diagnosis of suprasellar lesions.
RESUMO
Objective: Myocardial edema is an early manifestation of chemotherapy-related myocardial injury. In this study, we used cardiac magnetic resonance (CMR) T2 mapping to assess myocardial edema and its changes during chemotherapy for gynecologic malignancies. Methods: We enrolled 73 patients receiving chemotherapy for gynecologic malignancies, whose the latest cycle was within one month before the beginning of this study, and 41 healthy volunteers. All participants underwent CMR imaging. Of the 73 patients, 35 completed CMR follow-up after a median interval of 6 (3.3 to 9.6) months. The CMR sequences included cardiac cine, T2 mapping, and late gadolinium enhancement. Results: Myocardial T2 was elevated in patients who were treated with chemotherapy compared with healthy volunteers [41ms (40ms to 43ms) vs. 41ms (39ms to 41ms), P = 0.030]. During follow-up, myocardial T2 rose further [40ms (39ms to 42ms) vs. 42.70 ± 2.92ms, P < 0.001]. Multivariate analysis showed that the number of chemotherapy cycles was associated with myocardial T2 elevation (ß = 0.204, P = 0.029). After adjustment for other confounders, myocardial T2 elevation was independently associated with a decrease in left ventricular mass (ß = -0.186; P = 0.024). Conclusion: In patients with gynecologic malignancies, myocardial edema developed with chemotherapy cycles increase, and was associated with left ventricular mass decrease. T2 mapping allows the assessment of myocardial edema and monitoring of its change during chemotherapy.