Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Blood ; 139(1): 59-72, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34411225

RESUMO

Proteasome inhibitors (PIs) such as bortezomib (Btz) and carfilzomib (Cfz) are highly efficacious for patients with multiple myeloma (MM). However, relapses are frequent, and acquired resistance to PI treatment emerges in most patients. Here, we performed a high-throughput screen of 1855 Food and Drug Administration (FDA)-approved drugs and identified all-trans retinoic acid (ATRA), which alone has no antimyeloma effect, as a potent drug that enhanced MM sensitivity to Cfz-induced cytotoxicity and resensitized Cfz-resistant MM cells to Cfz in vitro. ATRA activated retinoic acid receptor (RAR)γ and interferon-ß response pathway, leading to upregulated expression of IRF1. IRF1 in turn initiated the transcription of OAS1, which synthesized 2-5A upon binding to double-stranded RNA (dsRNA) induced by Cfz and resulted in cellular RNA degradation by RNase L and cell death. Similar to ATRA, BMS961, a selective RARγ agonist, could also (re)sensitize MM cells to Cfz in vitro, and both ATRA and BMS961 significantly enhanced the therapeutic effects of Cfz in established MM in vivo. In support of these findings, analyses of large datasets of patients' gene profiling showed a strong and positive correlation between RARγ and OAS1 expression and patient's response to PI treatment. Thus, this study highlights the potential for RARγ agonists to sensitize and overcome MM resistance to Cfz treatment in patients.


Assuntos
Antineoplásicos/farmacologia , Imunidade Inata/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Oligopeptídeos/farmacologia , Receptores do Ácido Retinoico/agonistas , 2',5'-Oligoadenilato Sintetase/imunologia , Linhagem Celular Tumoral , Endorribonucleases/imunologia , Humanos , Receptores do Ácido Retinoico/imunologia , Células Tumorais Cultivadas , Receptor gama de Ácido Retinoico
2.
Blood ; 136(22): 2557-2573, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-32582913

RESUMO

Multiple myeloma (MM) remains largely incurable despite significant advances in biotherapy and chemotherapy. The development of drug resistance is a major problem in MM management. Macrophage migration inhibitory factor (MIF) expression was significantly higher in purified MM cells from relapsed patients than those with sustained response, and MM patients with high MIF had significantly shorter progression-free survival (PFS) and overall survival (OS). MM cell lines also express high levels of MIF, and knocking out MIF made them more sensitive to proteasome inhibitor (PI)-induced apoptosis not observed with other chemotherapy drugs. Mechanistic studies showed that MIF protects MM cells from PI-induced apoptosis by maintaining mitochondrial function via suppression of superoxide production in response to PIs. Specifically, MIF, in the form of a homotrimer, acts as a chaperone for superoxide dismutase 1 (SOD1) to suppress PI-induced SOD1 misfolding and to maintain SOD1 activity. MIF inhibitor 4-iodo-6-phenylpyrimidine and homotrimer disrupter ebselen, which do not kill MM cells, enhanced PI-induced SOD1 misfolding and loss of function, resulting in significantly more cell death in both cell lines and primary MM cells. More importantly, inhibiting MIF activity in vivo displayed synergistic antitumor activity with PIs and resensitized PI-resistant MM cells to treatment. In support of these findings, gene-profiling data showed a significantly negative correlation between MIF and SOD1 expression and response to PI treatment in patients with MM. This study shows that MIF plays a crucial role in MM sensitivity to PIs and suggests that targeting MIF may be a promising strategy to (re)sensitize MM to the treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Mieloma Múltiplo , Proteínas de Neoplasias/metabolismo , Inibidores de Proteassoma/farmacologia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Lipid Res ; 59(12): 2287-2296, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309895

RESUMO

Production of 25-hydroxycholesterol (25HC), a potent inhibitor of viral infection, is catalyzed by cholesterol 25-hydroxylase (CH25H). We previously reported that 25HC induced CH25H expression in a liver X receptor (LXR)-dependent manner, implying that LXR can play an important role in antiviral infection. In this study, we determined that activation of LXR by 25HC or synthetic ligands [T0901317 (T317) or GW3965] inhibited infection of herpes simplex virus type 1 (HSV-1) or MLV-(VSV)-GFP in HepG2 cells or RAW 264.7 macrophages. Genetic deletion of LXRα, LXRß, or CH25H expression in HepG2 cells by CRISPR/Cas9 method increased cell susceptibility to HSV-1 infection and attenuated the inhibition of LXR on viral infection. Lack of interferon (IFN)-γ expression also increased cell susceptibility to viral infection. However, it attenuated, but did not block, the inhibition of LXR on HSV-1 infection. In addition, expression of CH25H, but not IFN-γ, was inversely correlated to cell susceptibility to viral infection and the antiviral actions of LXR. Metabolism of 25HC into 25HC-3-sulfate (25HC3S) by cholesterol sulfotransferase-2B1b moderately reduced the antiviral actions of 25HC because 25HC3S is a weaker inhibitor of HSV-1 infection than 25HC. Furthermore, administration of T317 to BALB/c mice reduced HSV-1 growth in mouse tissues. Taken together, we demonstrate an antiviral system of 25HC with involvement of LXR activation, interaction between CH25H and IFN-γ, and 25HC metabolism.


Assuntos
Hidroxicolesteróis/metabolismo , Receptores X do Fígado/metabolismo , Animais , Western Blotting , Sistemas CRISPR-Cas/genética , Células Hep G2 , Herpesvirus Humano 1/metabolismo , Humanos , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Reação em Cadeia da Polimerase em Tempo Real , Sulfotransferases/metabolismo
4.
J Lipid Res ; 59(3): 439-451, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298812

RESUMO

Cholesterol 25-hydroxylase (CH25H) catalyzes the production of 25-hydroxycholesterol (25-HC), an oxysterol that can play an important role in different biological processes. However, the mechanisms regulating CH25H expression have not been fully elucidated. In this study, we determined that CH25H is highly expressed in mouse liver and peritoneal macrophages. We identified several liver X receptor (LXR) response elements (LXREs) in the human CH25H promoter. In HepG2 cells, activation of LXR by 25-HC or other oxysterols and synthetic ligands [T0901317 (T317) and GW3965] induced CH25H protein expression, which was associated with increased CH25H mRNA expression. 25-HC or T317 activated CH25H transcription in an LXRE-dependent manner. Thus, high-expressing LXRα or LXRß activated CH25H expression, and the activation was further enhanced by LXR ligands. In contrast, inhibition of LXRα/ß expression attenuated 25-HC or T317-induced CH25H expression. Deficiency of interferon γ expression reduced, but did not block, LXR ligand-induced hepatic CH25H expression. Activation of LXR also substantially induced macrophage CH25H expression. In vivo, administration of GW3965 to mice increased CH25H expression in both liver and peritoneal macrophages. Taken together, our study demonstrates that 25-HC can activate CH25H expression in an LXR-dependent manner, which may be an important mechanism to exert the biological actions of 25-HC.


Assuntos
Hidroxicolesteróis/farmacologia , Receptores X do Fígado/antagonistas & inibidores , Esteroide Hidroxilases/biossíntese , Animais , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Hidroxicolesteróis/sangue , Interferon gama/deficiência , Interferon gama/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7 , Esteroide Hidroxilases/metabolismo , Receptores Toll-Like/metabolismo
5.
J Biol Chem ; 290(36): 21788-99, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26187465

RESUMO

The glutathione (GSH)-dependent antioxidant system has been demonstrated to inhibit atherosclerosis. Macrophage CD36 uptakes oxidized low density lipoprotein (oxLDL) thereby facilitating foam cell formation and development of atherosclerosis. It remains unknown if GSH can influence macrophage CD36 expression and cellular oxLDL uptake directly. Herein we report that treatment of macrophages with l-buthionine-S,R-sulfoximine (BSO) decreased cellular GSH production and ratios of GSH to glutathione disulfide (GSH/GSSG) while increasing production of reactive oxygen species. Associated with decreased GSH levels, macrophage CD36 expression was increased, which resulted in enhanced cellular oxLDL uptake. In contrast, N-acetyl cysteine and antioxidant enzyme (catalase or superoxide dismutase) blocked BSO-induced CD36 expression as well as oxLDL uptake. In vivo, administration of mice with BSO increased CD36 expression in peritoneal macrophages and kidneys. BSO had no effect on CD36 mRNA expression and promoter activity but still induced CD36 protein expression in macrophages lacking peroxisome proliferator-activated receptor γ expression, suggesting it induced CD36 expression at the translational level. Indeed, we determined that BSO enhanced CD36 translational efficiency. Taken together, our study demonstrates that cellular GSH levels and GSH/GSSG status can regulate macrophage CD36 expression and cellular oxLDL uptake and demonstrate an important anti-atherogenic function of the GSH-dependent antioxidant system by providing a novel molecular mechanism.


Assuntos
Antígenos CD36/metabolismo , Glutationa/biossíntese , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Acetilcisteína/farmacologia , Animais , Antimetabólitos/farmacologia , Western Blotting , Butionina Sulfoximina/farmacologia , Antígenos CD36/genética , Linhagem Celular , Sequestradores de Radicais Livres/farmacologia , Expressão Gênica/efeitos dos fármacos , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Lipoproteínas LDL/farmacocinética , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/genética , PPAR gama/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
J Biol Chem ; 290(23): 14418-29, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25914138

RESUMO

Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters from high density lipoprotein to triglyceride-rich lipoproteins. CETP expression can be transcriptionally activated by liver X receptor (LXR). Etoposide and teniposide are DNA topoisomerase II (Topo II) inhibitors. Etoposide has been reported to inhibit atherosclerosis in rabbits with un-fully elucidated mechanisms. In this study we determined if Topo II activity can influence cholesterol metabolism by regulating hepatic CETP expression. Inhibition of Topo II by etoposide, teniposide, or Topo II siRNA increased CETP expression in human hepatic cell line, HepG2 cells, which was associated with increased CETP secretion and mRNA expression. Meanwhile, inhibition of LXR expression by LXR siRNA attenuated induction of CETP expression by etoposide and teniposide. Etoposide and teniposide induced LXRα expression and LXRα/ß nuclear translocation while inhibiting expression of receptor interacting protein 140 (RIP140), an LXR co-repressor. In vivo, administration of teniposide moderately reduced serum lipid profiles, induced CETP expression in the liver, and activated reverse cholesterol transport in CETP transgenic mice. Our study demonstrates a novel function of Topo II inhibitors in cholesterol metabolism by activating hepatic CETP expression and reverse cholesterol transport.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/genética , Colesterol/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Teniposídeo/farmacologia , Inibidores da Topoisomerase II/farmacologia , Animais , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Transporte Proteico/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
7.
Biochim Biophys Acta ; 1852(5): 1038-48, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25703139

RESUMO

Hernia is a disease with defects in collagen synthesis/metabolism. However, the underlying mechanisms for hernia formation have not been fully defined. Tamoxifen is a selective estrogen receptor modulator and used for patients with breast cancer. Tamoxifen also has pleiotropic and side effects. Herein, we report that tamoxifen treatment resulted in an appearance of a large bulge in the low abdomen between the hind legs in male but not in female mice. The autopsy demonstrated that the low abdominal wall was broken and a large amount of intestine herniated out of the abdominal cavity. Histological analysis indicated that tamoxifen caused structural abnormalities in the low abdominal wall which were associated with decreased type II collagen content. Furthermore, we determined increased matrix metalloproteinase-2 (MMP-2) and MMP-13 expression in the tissue. In vitro, tamoxifen induced MMP-2 and MMP-13 expression in fibroblasts. The promoter activity analysis and ChIP assay demonstrate that induction of MMP-13 expression was associated with activation of JNK-AP-1 and ERK1/2 signaling pathways while induction of MMP-2 expression was related to activation of the ERK1/2 signaling pathway. Taken together, our study establishes a novel murine hernia model, defines a severe side effect of tamoxifen, and suggests a caution to male patients receiving tamoxifen treatment.


Assuntos
Hérnia/genética , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 2 da Matriz/genética , Tamoxifeno/farmacologia , Parede Abdominal/patologia , Animais , Western Blotting , Colágeno Tipo II/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hérnia/induzido quimicamente , Hérnia/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/toxicidade , Fatores Sexuais , Tamoxifeno/toxicidade
8.
Arterioscler Thromb Vasc Biol ; 35(4): 948-59, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25810299

RESUMO

OBJECTIVE: Activation of liver X receptor (LXR) inhibits atherosclerosis but induces hypertriglyceridemia. In vitro, it has been shown that mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor synergizes LXR ligand-induced macrophage ABCA1 expression and cholesterol efflux. In this study, we determined whether MEK1/2 (U0126) and LXR ligand (T0901317) can have a synergistic effect on the reduction of atherosclerosis while eliminating LXR ligand-induced fatty livers and hypertriglyceridemia. We also set out to identify the cellular mechanisms of the actions. APPROACH AND RESULTS: Wild-type mice were used to determine the effect of U0126 on a high-fat diet or high-fat diet plus T0901317-induced transient dyslipidemia and liver injury. ApoE deficient (apoE(-/-)) mice or mice with advanced lesions were used to determine the effect of the combination of T0901317 and U0126 on atherosclerosis and hypertriglyceridemia. We found that U0126 protected animals against T0901317-induced transient or long-term hepatic lipid accumulation, liver injury, and hypertriglyceridemia. Meanwhile, the combination of T0901317 and U0126 inhibited the development of atherosclerosis in a synergistic manner and reduced advanced lesions. Mechanistically, in addition to synergistic induction of macrophage ABCA1 expression, the combination of U0126 and T0901317 maintained arterial wall integrity, inhibited macrophage accumulation in aortas and formation of macrophages/foam cells, and activated reverse cholesterol transport. The inhibition of T0901317-induced lipid accumulation by the combined U0126 might be attributed to inactivation of lipogenesis and activation of lipolysis/fatty acid oxidation pathways. CONCLUSIONS: Our study suggests that the combination of mitogen-activated protein kinase kinase 1/2 inhibitor and LXR ligand can function as a novel therapy to synergistically reduce atherosclerosis while eliminating LXR-induced deleterious effects.


Assuntos
Doenças da Aorta/prevenção & controle , Apolipoproteínas E/deficiência , Aterosclerose/prevenção & controle , Butadienos/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Nitrilas/farmacologia , Receptores Nucleares Órfãos/agonistas , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Aorta/patologia , Doenças da Aorta/enzimologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Colesterol/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/enzimologia , Fígado Gorduroso/patologia , Fígado Gorduroso/prevenção & controle , Feminino , Células Espumosas/efeitos dos fármacos , Células Espumosas/enzimologia , Células Espumosas/patologia , Células Hep G2 , Humanos , Hidrocarbonetos Fluorados/toxicidade , Hipertrigliceridemia/induzido quimicamente , Hipertrigliceridemia/enzimologia , Hipertrigliceridemia/patologia , Hipertrigliceridemia/prevenção & controle , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores X do Fígado , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores Nucleares Órfãos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/toxicidade
9.
Int J Cancer ; 136(4): 771-83, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24947959

RESUMO

Several MEK1/2 inhibitors have been in clinical trial evaluation for cancer treatment. Interferon-γ (IFN-γ) is a cytokine with multiple biological functions including antitumor activity. Expression of IFN-γ can be induced by liver X receptor (LXR), a ligand-activated transcription factor. However, it remains unknown if the anti-cancer action of MEK1/2 inhibitors is completed, at least in part, by activating IFN-γ expression. In this study, we determined that U0126, a MEK1/2 inhibitor, increased tumor-free and survival rates and decreased growth of inoculated Lewis lung carcinomas in wild type mice. However, the protective effects were substantially attenuated in IFN-γ deficient (IFN-γ-/-) mice. At cellular and molecular levels, MEK1/2 inhibitors increased IFN-γ protein and mRNA expression and activated natural IFN-γ promoter but not the IFN-γ promoters with mutations of the LXR responsive elements (LXREs). MEK1/2 inhibitors also enhanced formation of the LXRE-nuclear protein complexes by inducing LXR expression and nuclear translocation. Similarly, MEK1/2 siRNA inhibited phosphorylation of ERK1/2 by MEK1/2 while activated IFN-γ expression. In contrast, inhibition of LXR expression by siRNA blocked MEK1/2 inhibitors-induced IFN-γ expression. U0126 also inhibited chemicals-induced pulmonary carcinomas, which was associated with increased IFN-γ expression in the lung. Taken together, our study suggests that MEK1/2 inhibitors induce IFN-γ production in an LXR-dependent manner and the induction of IFN-γ expression can partially contribute to the anti-tumorigenic properties of U0126.


Assuntos
Antineoplásicos/farmacologia , Butadienos/farmacologia , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Interferon gama/genética , Nitrilas/farmacologia , Ativação Transcricional/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Animais , Carcinoma Pulmonar de Lewis/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Feminino , Expressão Gênica , Interferon gama/metabolismo , Receptores X do Fígado , Pulmão/metabolismo , Pulmão/patologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biochem J ; 459(2): 345-54, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24438183

RESUMO

LXR (liver X receptor) is a ligand-activated transcription factor and plays an important role in regulation of lipid homoeostasis and inflammation. Several studies indicate that LXR inhibits IFN-γ (interferon γ)-induced biological responses; however, the influence of LXR on IFN-γ expression has not been fully elucidated. In the present study, we investigated the effects of LXR activation on IFN-γ expression at different levels. At the molecular level, we surprisingly observed that LXR ligand (T0901317) induced macrophage and T-cell IFN-γ protein expression which was associated with increased mRNA and secreted protein levels in culture medium. In contrast, selective inhibition of LXRα and/or LXRß expression by siRNA reduced IFN-γ expression. Promoter analysis defined the multiple LXREs (LXR-responsive elements) in the proximal region of the IFN-γ promoter. EMSAs and ChIP indicated that LXR activation enhanced the binding of LXR protein to these LXREs. In vivo, T0901317 increased wild-type mouse serum IFN-γ levels and IFN-γ expression in the lung and lymph nodes. Functionally, we observed that administration of T0901317 to wild-type mice increased rates of survival and being tumour-free, and inhibited tumour growth when the animals were inoculated with LLC1 carcinoma. In contrast, these protective effects were substantially attenuated in IFN-γ-knockout (IFN-γ-/-) mice, suggesting that the induction of IFN-γ production plays a critical role in T0901317-inhibited tumour growth. Taken together, the results of the present study show that IFN-γ is another molecular target of LXR activation, and it suggests a new mechanism by which LXR inhibits tumour growth.


Assuntos
Regulação da Expressão Gênica/fisiologia , Interferon gama/metabolismo , Receptores Nucleares Órfãos/metabolismo , Animais , Linhagem Celular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrocarbonetos Fluorados/farmacologia , Interferon gama/genética , Receptores X do Fígado , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais , Receptores Nucleares Órfãos/genética , Distribuição Aleatória , Sulfonamidas/farmacologia
11.
Biochim Biophys Acta ; 1831(6): 1134-45, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23466610

RESUMO

ATP-binding cassette transporter A1 (ABCA1) facilitates cholesterol efflux and thereby inhibits lipid-laden macrophage/foam cell formation and atherosclerosis. ABCA1 expression is transcriptionally regulated by activation of liver X receptor (LXR). Both etoposide and teniposide are DNA topoisomerase II (Topo II) inhibitors and are chemotherapeutic medications used in the treatment of various cancers. Interestingly, etoposide inhibits atherosclerosis in rabbits by unclear mechanisms. Herein, we report the effects of etoposide and teniposide on macrophage ABCA1 expression and cholesterol efflux. Both etoposide and teniposide increased macrophage free cholesterol efflux. This increase was associated with increased ABCA1 mRNA and protein expression. Etoposide and teniposide also increased ABCA1 promoter activity in an LXR-dependent manner and formation of the LXRE-LXR/RXR complex indicating that transcriptional induction had occurred. Expression of ABCG1 and fatty acid synthase (FAS), another two LXR-targeted genes, was also induced by etoposide and teniposide. In vivo, administration of mice with either etoposide or teniposide induced macrophage ABCA1 expression and enhanced reverse cholesterol transport from macrophages to feces. Taken together, our study indicates that etoposide and teniposide increase macrophage ABCA1 expression and cholesterol efflux that may be attributed to the anti-atherogenic properties of etoposide. Our study also describes a new function for Topo II inhibitors in addition to their role in anti-tumorigenesis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Colesterol/metabolismo , Células Espumosas/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Receptores Nucleares Órfãos/metabolismo , Inibidores da Topoisomerase II/farmacologia , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Células Cultivadas , Ensaio de Desvio de Mobilidade Eletroforética , Etoposídeo/farmacologia , Imunofluorescência , Células Espumosas/citologia , Células Espumosas/metabolismo , Receptores X do Fígado , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/antagonistas & inibidores , Receptores Nucleares Órfãos/genética , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/genética , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Teniposídeo/farmacologia
12.
Biochem J ; 454(3): 467-77, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23805908

RESUMO

Macrophage adipocyte fatty acid-binding protein (FABP4) plays an important role in foam cell formation and development of atherosclerosis. Tamoxifen inhibits this disease process. In the present study, we determined whether the anti-atherogenic property of tamoxifen was related to its inhibition of macrophage FABP4 expression. We initially observed that tamoxifen inhibited macrophage/foam cell formation, but the inhibition was attenuated when FABP4 expression was selectively inhibited by siRNA.We then observed that tamoxifen and 4-hydroxytamoxifen inhibited FABP4 protein expression in primary macrophages isolated from both the male and female wild-type mice, suggesting that the inhibition is sex-independent. Tamoxifen and 4-hydroxytamoxifen inhibited macrophage FABP4 protein expression induced either by activation of GR (glucocorticoid receptor) or PPARγ (peroxisome-proliferator-activated receptor γ). Associated with the decreased protein expression, Fabp4 mRNA expression and promoter activity were also inhibited by tamoxifen and 4-hydroxytamoxifen, indicating transcriptional regulation. Analysis of promoter activity and EMSA/ChIP assays indicated that tamoxifen and 4-hydroxytamoxifen activated the nGRE (negative glucocorticoid regulatory element), but inhibited the PPRE (PPARγ regulatory element) in the Fabp4 gene. In vivo, administration of tamoxifen to ApoE (apolipoprotein E)-deficient (apoE-/-) mice on a high-fat diet decreased FABP4 expression in macrophages and adipose tissues as well as circulating FABP4 levels. Tamoxifen also inhibited FABP4 protein expression by human blood monocyte-derived macrophages. Taken together, the results of the present study show that tamoxifen inhibited FABP4 expression through the combined effects of GR and PPARγ signalling pathways. Our findings suggest that the inhibition of macrophage FABP4 expression can be attributed to the antiatherogenic properties of tamoxifen.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , PPAR gama/metabolismo , Receptores de Glucocorticoides/metabolismo , Tamoxifeno/farmacologia , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Sequência de Bases , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Fatores Sexuais , Transdução de Sinais , Transcrição Gênica
13.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192544

RESUMO

CD8+ T cell longevity regulated by metabolic activity plays important roles in cancer immunotherapy. Although in vitro-polarized, transferred IL-9-secreting CD8+ Tc9 (cytotoxic T lymphocyte subset 9) cells exert greater persistence and antitumor efficacy than Tc1 cells, the underlying mechanism remains unclear. Here, we show that tumor-infiltrating Tc9 cells display significantly lower lipid peroxidation than Tc1 cells in several mouse models, which is strongly correlated with their persistence. Using RNA-sequence and functional validation, we found that Tc9 cells exhibited unique lipid metabolic programs. Tc9 cell-derived IL-9 activated STAT3, upregulated fatty acid oxidation and mitochondrial activity, and rendered Tc9 cells with reduced lipid peroxidation and resistance to tumor- or ROS-induced ferroptosis in the tumor microenvironment. IL-9 signaling deficiency, inhibiting STAT3, or fatty acid oxidation increased lipid peroxidation and ferroptosis of Tc9 cells, resulting in impaired longevity and antitumor ability. Similarly, human Tc9 cells also exhibited lower lipid peroxidation than Tc1 cells and tumor-infiltrating CD8+ T cells expressed lower IL9 and higher lipid peroxidation- and ferroptosis-related genes than circulating CD8+ T cells in patients with melanoma. This study indicates that lipid peroxidation regulates Tc9 cell longevity and antitumor effects via the IL-9/STAT3/fatty acid oxidation pathway and regulating T cell lipid peroxidation can be used to enhance T cell-based immunotherapy in human cancer.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-9 , Animais , Linfócitos T CD8-Positivos/metabolismo , Ácidos Graxos/metabolismo , Humanos , Imunoterapia/métodos , Interleucina-9/genética , Peroxidação de Lipídeos , Camundongos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
14.
J Hematol Oncol ; 15(1): 55, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526043

RESUMO

Lysophosphatidic acid (LPA) is a naturally occurring phospholipid that regulates cell proliferation, survival, and migration. However, its role on human multiple myeloma (MM) cells is largely unknown. In this study, we show that LPA, which is highly elevated in MM patients, plays an important role in protecting human MM cells against proteasome inhibitor (PI)-induced apoptosis. LPA bound to its receptor LPAR2 activated its downstream MEK1/2-ERK1/2 signaling pathway and enhanced oxidative phosphorylation (OXPHOS) in mitochondria in MM cells. Increased OXPHOS activity produced more NAD+ and ATP, reduced proteasome activity, and enhanced protein folding and refolding in endoplasmic reticulum (ER), leading to induction of MM resistance to PIs. Importantly, inhibiting LPAR2 activity or knocking out LPAR2 in MM cells significantly enhanced MM sensitivity to PI-induced apoptosis in vitro and in vivo. Interestingly, primary MM cells from LPA-high patients were more resistant to PI-induced apoptosis than MM cells from LPA-low patients. Thus, our study indicates that LPA-LPAR2-mediated signaling pathways play an important role in MM sensitivity to PIs and targeting LPA or LPAR2 may potentially be used to (re)sensitize patients to PI-based therapy.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Apoptose , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo
15.
Cell Metab ; 33(5): 1001-1012.e5, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33691090

RESUMO

Understanding the mechanisms underlying how T cells become dysfunctional in a tumor microenvironment (TME) will greatly benefit cancer immunotherapy. We found that increased CD36 expression in tumor-infiltrating CD8+ T cells, which was induced by TME cholesterol, was associated with tumor progression and poor survival in human and murine cancers. Genetic ablation of Cd36 in effector CD8+ T cells exhibited increased cytotoxic cytokine production and enhanced tumor eradication. CD36 mediated uptake of fatty acids by tumor-infiltrating CD8+ T cells in TME, induced lipid peroxidation and ferroptosis, and led to reduced cytotoxic cytokine production and impaired antitumor ability. Blocking CD36 or inhibiting ferroptosis in CD8+ T cells effectively restored their antitumor activity and, more importantly, possessed greater antitumor efficacy in combination with anti-PD-1 antibodies. This study reveals a new mechanism of CD36 regulating the function of CD8+ effector T cells and therapeutic potential of targeting CD36 or inhibiting ferroptosis to restore T cell function.


Assuntos
Antígenos CD36/metabolismo , Linfócitos T CD8-Positivos/imunologia , Ferroptose , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD36/antagonistas & inibidores , Antígenos CD36/genética , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Ferroptose/efeitos dos fármacos , Humanos , Imunoterapia , Peroxidação de Lipídeos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/terapia , Espécies Reativas de Oxigênio/metabolismo , Taxa de Sobrevida , Microambiente Tumoral
16.
Cancer Res ; 80(7): 1438-1450, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32015091

RESUMO

Tumor-associated macrophages (TAM) are important tumor-promoting cells. However, the mechanisms underlying how the tumor and its microenvironment reprogram these cells remain elusive. Here we report that lipids play a crucial role in generating TAMs in the tumor microenvironment (TME). Macrophages from both human and murine tumor tissues were enriched with lipids due to increased lipid uptake by macrophages. TAMs expressed elevated levels of the scavenger receptor CD36, accumulated lipids, and used fatty acid oxidation (FAO) instead of glycolysis for energy. High levels of FAO promoted mitochondrial oxidative phosphorylation, production of reactive oxygen species, phosphorylation of JAK1, and dephosphorylation of SHP1, leading to STAT6 activation and transcription of genes that regulate TAM generation and function. These processes were critical for TAM polarization and activity, both in vitro and in vivo. In summary, we highlight the importance of lipid metabolism in the differentiation and function of protumor TAMs in the TME. SIGNIFICANCE: This study highlights the role of lipid metabolism in the differentiation and function of TAMs and suggests targeting TAM fatty acid oxidation as a potential therapeutic modality for human cancers.


Assuntos
Diferenciação Celular/imunologia , Metabolismo dos Lipídeos/imunologia , Macrófagos/imunologia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral/transplante , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Neoplasias/patologia , Oxirredução , Fosforilação Oxidativa , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo
17.
Nat Commun ; 11(1): 5902, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214555

RESUMO

CAR-T cell therapy is effective for hematologic malignancies. However, considerable numbers of patients relapse after the treatment, partially due to poor expansion and limited persistence of CAR-T cells in vivo. Here, we demonstrate that human CAR-T cells polarized and expanded under a Th9-culture condition (T9 CAR-T) have an enhanced antitumor activity against established tumors. Compared to IL2-polarized (T1) cells, T9 CAR-T cells secrete IL9 but little IFN-γ, express central memory phenotype and lower levels of exhaustion markers, and display robust proliferative capacity. Consequently, T9 CAR-T cells mediate a greater antitumor activity than T1 CAR-T cells against established hematologic and solid tumors in vivo. After transfer, T9 CAR-T cells migrate effectively to tumors, differentiate to IFN-γ and granzyme-B secreting effector memory T cells but remain as long-lived and hyperproliferative T cells. Our findings are important for the improvement of CAR-T cell-based immunotherapy for human cancers.


Assuntos
Citotoxicidade Imunológica , Imunoterapia Adotiva/métodos , Interleucina-9/metabolismo , Linfócitos T/imunologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Humanos , Memória Imunológica , Interferon gama/metabolismo , Camundongos , Fenótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Linfócitos T/transplante , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cell Metab ; 30(1): 143-156.e5, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31031094

RESUMO

Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8+ T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8+ T cells were positively and progressively associated with upregulated T cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8+ T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering a tumor. Tumor culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8+ T cells. Consequently, the ER stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8+ T cells effectively restored antitumor activity. This study reveals a mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T cell-based immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Colesterol/sangue , Microambiente Tumoral/fisiologia , Animais , Western Blotting , Citometria de Fluxo , Humanos , Imunoprecipitação , Imunoterapia , Melanoma Experimental/sangue , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
19.
Cancer Cell ; 33(6): 1048-1060.e7, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894691

RESUMO

The antitumor effector T helper 1 (Th1) and Th17 cells represent two T cell paradigms: short-lived cytolytic Th1 cells and "stem cell-like" memory Th17 cells. We report that Th9 cells represent a third paradigm-they are less-exhausted, fully cytolytic, and hyperproliferative. Only tumor-specific Th9 cells completely eradicated advanced tumors, maintained a mature effector cell signature with cytolytic activity as strong as Th1 cells, and persisted as long as Th17 cells in vivo. Th9 cells displayed a unique Pu.1-Traf6-NF-κB activation-driven hyperproliferative feature, suggesting a persistence mechanism rather than an antiapoptotic strategy. Th9 antitumor efficacy depended on interleukin-9 and upregulated expression of Eomes and Traf6. Thus, tumor-specific Th9 cells are a more effective CD4+ T cell subset for adoptive cancer therapy.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interleucina-9/imunologia , Melanoma Experimental/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/imunologia , Imunoterapia Adotiva/métodos , Interleucina-9/genética , Interleucina-9/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/terapia , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/imunologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/imunologia , Fator 6 Associado a Receptor de TNF/metabolismo , Transativadores/genética , Transativadores/imunologia , Transativadores/metabolismo
20.
J Exp Med ; 215(6): 1555-1569, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29743292

RESUMO

CD8+ T cells can be polarized into IL-9-secreting (Tc9) cells. We previously showed that adoptive therapy using tumor-specific Tc9 cells generated stronger antitumor responses in mouse melanoma than classical Tc1 cells. To understand why Tc9 cells exert stronger antitumor responses, we used gene profiling to compare Tc9 and Tc1 cells. Tc9 cells expressed different levels of cholesterol synthesis and efflux genes and possessed significantly lower cholesterol content than Tc1 cells. Unique to Tc9, but not other CD8+ or CD4+ T cell subsets, manipulating cholesterol content in polarizing Tc9 cells significantly affected IL-9 expression and Tc9 differentiation and antitumor response in vivo. Mechanistic studies showed that IL-9 was indispensable for Tc9 cell persistence and antitumor effects, and cholesterol or its derivatives inhibited IL-9 expression by activating liver X receptors (LXRs), leading to LXR Sumoylation and reduced p65 binding to Il9 promoter. Our study identifies cholesterol as a critical regulator of Tc9 cell differentiation and function.


Assuntos
Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Colesterol/farmacologia , Interleucina-9/biossíntese , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores X do Fígado/metabolismo , Camundongos Endogâmicos C57BL , Oxirredução , Oxisteróis/farmacologia , Sumoilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa