Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Revista
Assunto da revista
Intervalo de ano de publicação
1.
Small ; 20(26): e2309689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38258384

RESUMO

Developing efficient water-splitting electrocatalysts to accelerate the slow oxygen evolution reaction (OER) kinetics is urgently desired for hydrogen production. Herein, ultralow phosphorus (P)-doped NiFe LDH (NiFePx LDH) with mild compressive strain is synthesized as an efficient OER electrocatalyst. Remarkably, NiFePx LDH with the phosphorus mass ratio of 0.32 wt.% and compressive strain ratio of 2.53% (denoted as NiFeP0.32 LDH) exhibits extraordinary OER activity with an overpotential as low as 210 mV, which is superior to that of commercial IrO2 and other reported P-based OER electrocatalysts. Both experimental performance and density function theory (DFT) calculation demonstrate that the doping of P atoms can generate covalent Fe─P coordination bonds and lattice distortion, thus resulting in the consequent depletion of electrons around the Fe active center and the downward shift of the d-band center, which can lead to a weaker adsorption ability of *O intermediate to improve the catalytic performance of NiFeP0.32 LDH for OER. This work provides novel insights into the distinctive coordinated configuration of P in NiFePx LDH, which can result in superior catalytic performance for OER.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa