Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666745

RESUMO

BACKGROUND: Complex phosphates (CP) can improve the physicochemical properties and gelation properties of myofibrillar fibrous protein (MP) in mixed meat products, but an excessive intake of phosphates over a long period of time is harmful to health. The present study investigated the effects of partial or complete substitution of CP with sodium bicarbonate (SB) on the physicochemical properties and gel properties of beef-pork-chicken mixed myofibrillar protein (BPC-MP), aiming to evaluate the feasibility of this method in reducing the amount of phosphate in mixed meat products. RESULTS: Under the optimal substitution conditions, the turbidity of BPC-MP was reduced by 37.8%, the net negative potential was increased by 28.9% and the modulus of elasticity (G') was increased. The tertiary structure indexes of protein (including fluorescence intensity, surface hydrophobicity and active thiol content) were significantly changed, whereas the α-helix and ß-turn angle contents in the secondary structure of protein were significantly increased. In addition, the water retention ability and strength of gel were also improved, which were increased by 20.7% and 42.6%, respectively. The results of scanning electron microscopy showed that the SB substitution group had a more compact and ordered microstructure. CONCLUSION: The results showed that partial substitution of CP with SB reduced the amount of phosphate added to BPC-MP and had a positive effect on the physicochemical and gel properties of BPC-MP. © 2024 Society of Chemical Industry.

2.
Kidney Blood Press Res ; 47(12): 702-710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260980

RESUMO

INTRODUCTION: Renal cell carcinoma (RCC) generally has a poor prognosis because of late diagnosis and metastasis. Despite its abundance in RCC cells, the functions of kallikrein-related peptidase 4 (KLK4) in RCC cells remain unknown. The results of this investigation were examined to discover if KLK4 gene silencing influences the development of RCC cells. METHODS: The mRNA levels of KLK4 and the relationship between KLK4 and tumor stage in patients with RCC were analyzed from the GEPIA database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of KLK4. Cell Counting Kit 8 (CCK-8), colony formation, wound healing, and Transwell assays were used to examine the proliferation, invasion, and migration of RCC cells after KLK4 suppression. Finally, xenograft experiments in a mouse model helped understand the in vivo effects of KLK4 knockdown. RESULTS: Our research found that KLK4 expression was upregulated in the kidney chromophobe (KICH) specimens and cell lines. Moreover, inhibiting KLK4 growth led to a slowdown in RCC cell proliferation and colony formation. Additionally, KLK4 knockdown inhibited migration, invasion, and epithelial-mesenchymal transition (EMT) of RCC cells. AKT and ERK phosphorylation were enhanced with KLK4 silencing. In the nude mouse xenograft cancer model, KLK4 silencing also prevented the expression of Ki-67, CD105, and the growth of tumors. CONCLUSION: KLK4 accelerated KICH progression via the ERK/AKT signaling pathway, providing a novel regulatory mechanism for KICH pathogenesis.


Assuntos
Carcinoma de Células Renais , Calicreínas , Neoplasias Renais , Animais , Humanos , Camundongos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro , Transdução de Sinais , Calicreínas/metabolismo
3.
J Environ Sci (China) ; 103: 207-218, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33743903

RESUMO

Accelerating the (NH4)2SO3 oxidation gives rise to the reclaiming of byproduct, while there are secondary environmental risks from reduction of the coexisted selenium species by sulfite. In this study, a bi-functional Co-SBA-15-SH, were synthesized through Co impregnation and sulfhydryl (-SH) decoration, which can simultaneously uptake Se and accelerate sulfite oxidation efficiently. Meanwhile, the adsorption kinetics and migration mechanism of Se species were revealed through characterization and density functional calculations, with maximum adsorption capacity of 223 mg/g. The inhibition of Se0 re-emission and poisonous effect of Se on sulfite oxidation was also investigated. Using the findings of this study, the ammonia desulfurization can be improved by enabling purification of the byproduct and lowering the toxicity of effluent by removing toxic pollutants.


Assuntos
Amônia , Selênio , Catálise , Oxirredução , Sulfitos
4.
Phys Rev Lett ; 125(14): 142501, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064499

RESUMO

The recent RIKEN experiment on the quenched g_{A} in the superallowed Gamow-Teller transition from ^{100}Sn indicates the role of scale anomaly encoded in the anomalous dimension ß^{'} of the gluonic stress tensor Tr G_{µν}^{2}. This observation provides support to the notion of hidden scale symmetry emerging by strong nuclear correlations with an infrared (IR) fixed point realized-in the chiral limit-in the Nambu-Goldstone mode. We suggest there is an analogy in the way scale symmetry manifests in a nuclear medium to the continuity from the unitarity limit at low density (in light nuclei) to the dilaton limit at high density (in compact stars). In between the limits, say, at normal nuclear matter density, the symmetry is not visible, hence hidden.

5.
Phys Rev Lett ; 123(17): 172301, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31702227

RESUMO

We show that the recent proposal to describe the N_{f}=1 baryon in the large number of the color limit as a quantum Hall droplet can be understood as a chiral bag in a (1+2)-dimensional strip using the Cheshire Cat principle. For a small bag radius, the bag reduces to a vortex line which is the smile of the cat with flowing gapless quarks all spinning in the same direction. The disk enclosed by the smile is described by a topological field theory due to the Callan-Harvey anomaly outflow. The chiral bag naturally carries the unit baryon number and spin 1/2N_{c}. The generalization to arbitrary N_{f} is discussed.

6.
Cell Biol Int ; 43(12): 1453-1462, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31228307

RESUMO

Prostate cancer (PCa) is a common cancer worldwide, which mostly occurs in males over the age of 50. Accumulating evidence have determined that long non-coding RNA/microRNA (lncRNA/miRNA) axis plays a critical role in cell progression of cancers, including PCa. However, the pathogenesis of PCa has not been fully indicated. In this study, quantitative real-time polymerase chain reaction was used to detect the expression of HCG11 and miR-543. Western blot was applied to measure the protein expression of proliferating cell nuclear antigen, cleavage-caspase 3 (cle-caspase 3), N-cadherin, E-cadherin, GAPDH, P-AKT, AKT, p-mTOR, and mTOR. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), transwell invasion, and transwell migration assay were used to detect cell proliferation, invasion, and migration, respectively. The function and mechanism of lncRNA HCG11 were confirmed in PCa cell and xenograft mice models. Luciferase assay indicated that miR-543 was a target miRNA of HCG11. Further investigation revealed that overexpression of HCG11 inhibited cell proliferation, invasion, and migration, whereas induced cell apoptosis by regulating miR-543 expression in vitro and in vivo. More than that, lncRNA HCG11 inhibited phosphoinositide-3 kinase/protein kinaseB (PI3K/AKT) signaling pathway to suppress PCa progression. Our data showed the overexpression of HGC11-inhibited PI3K/AKT signaling pathway by downregulating miR-543 expression, resulting in the suppression of cell growth in PCa. This finding proved a new regulatory network in PCa and provided a novel therapeutic target of PCa.

7.
Water Sci Technol ; 80(5): 950-960, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31746802

RESUMO

In order to achieve efficient recovery of ions from the simultaneous desulfurization and denitrification wastewater, the effects of various factors (i.e. the saturation temperature, the cooling termination temperature, the stirring rate and the cooling rate) on crystallization yield, metastable zone width and crystal morphology were investigated to determine the optimal crystallization conditions of Mg2+//SO4 2-, NO3 --H2O system. According to the results of experiments, the nucleation kinetics were also speculated by Nývlt self-consistent equation and classical 3D nucleation theory. Also, the crystallization products were characterized by X-ray diffraction and scanning electron microscopy. Under the determined optimal conditions, the yield of the crystal can reach 78%, and the crystal products were verified as pure MgSO4· 7H2O, whose morphology is complete without defects.


Assuntos
Temperatura Baixa , Cristalização , Cinética , Temperatura , Difração de Raios X
8.
J Environ Sci (China) ; 83: 8-20, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31221390

RESUMO

With rapid economic growth and urbanization, the Yangtze River Delta (YRD) region in China has experienced serious air pollution challenges. In this study, we analyzed the air pollution characteristics and their relationship with emissions and meteorology in the YRD region during 2014-2016. In recent years, the concentrations of all air pollutants, except O3, decreased. Spatially, the PM2.5, PM10, SO2, and CO concentrations were higher in the northern YRD region, and NO2 and O3 were higher in the central YRD region. Based on the number of non-attainment days (i.e., days with air quality index greater than 100), PM2.5 was the largest contributor to air pollution in the YRD region, followed by O3, PM10, and NO2. However, particulate matter pollution has declined gradually, while O3 pollution worsened. Meteorological conditions mainly influenced day-to-day variations in pollutant concentrations. PM2.5 concentration was inversely related to wind speed, while O3 concentration was positively correlated with temperature and negatively correlated with relative humidity. The air quality improvement in recent years was mainly attributed to emission reductions. During 2014-2016, PM2.5, PM10, SO2, NOx, CO, NH3, and volatile organic compound (VOC) emissions in the YRD region were reduced by 26.3%, 29.2%, 32.4%, 8.1%, 15.9%, 4.5%, and 0.3%, respectively. Regional transport also contributed to the air pollution. During regional haze periods, pollutants from North China and East China aggravated the pollution in the YRD region. Our findings suggest that emission reduction and regional joint prevention and control helped to improve the air quality in the YRD region.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Conceitos Meteorológicos , China , Meteorologia , Ozônio , Material Particulado/análise , Rios , Estações do Ano , Temperatura , Urbanização
9.
Cell Physiol Biochem ; 43(3): 1003-1011, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28968601

RESUMO

BACKGROUND/AIMS: Tetrandrine and Fangchinoline (Fcn) are two natural products that are found in Stephania tetrandra. Tetrandrine is a known anti-bladder cancer compound, but the effects of Fcn on bladder cancer have been previously unclear. In the present study, we focused on the anti-tumor effects of Fcn on bladder cancer. METHODS AND RESULTS: We treated T24 and 5637 bladder cancer cell lines with Fcn in vitro. We observed that Fcn inhibited the viability of bladder cancer cells in a concentration-dependent manner. The expression of PCNA, a biomarker of proliferation, was down-regulated. Fcn treatment induced both apoptosis and autophagy in bladder cancer cells, as shown by the increased cleavage of caspase-3, an up-regulated LC3-II/LC3-I ratio and the down-regulated p62 level. Blocking autophagy with 3-MA (3-Methyladenine) enhanced Fcn-induced apoptosis, indicating that Fcn-induced autophagy was adaptive. Additionally, we observed that Fcn treatment inhibited mTOR and reduced the intracellular ATP levels. The exogenous addition of methyl pyruvate (MP) to compensate metabolic substrates alleviated Fcn-induced apoptosis and autophagy. CONCLUSIONS: Our data indicated that Fcn caused an impairment in energy generation, which led to apoptosis and adaptive autophagy in bladder cancer. These results demonstrated that Fcn may be a potential candidate for use in the prevention and treatment of bladder cancer.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Piruvatos/farmacologia , Proteínas de Ligação a RNA/metabolismo , Stephania tetrandra/química , Stephania tetrandra/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
10.
Environ Sci Technol ; 50(9): 4632-41, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27050081

RESUMO

Haze episodes occurred in Beijing repeatedly in 2013, resulting in 189 polluted days. These episodes differed in terms of sources, formation processes, and chemical composition and thus required different control policies. Therefore, an overview of the similarities and differences among these episodes is needed. For this purpose, we conducted one-year online observations and developed a program that can simultaneously divide haze episodes and identify their shapes. A total of 73 episodes were identified, and their shapes were linked with synoptic conditions. Pure-haze events dominated in wintertime, whereas mixed haze-dust (PM2.5/PM10 < 60%) and mixed haze-fog (Aerosol Water/PM2.5 ∼ 0.3) events dominated in spring and summer-autumn, respectively. For all types, increase of ratio of PM2.5 in PM10 was typically achieved before PM2.5 reached ∼150 µg/m(3). In all PM2.5 species observed, organic matter (OM) was always the most abundant component (18-60%), but it was rarely the driving factor: its relative contribution usually decreased as the pollution level increased. The only OM-driven episode observed was associated with intensive biomass-burning activities. In comparison, haze evolution generally coincided with increasing sulfur and nitrogen oxidation ratios (SOR and NOR), indicating the enhanced production of secondary inorganic species. Applicability of these conclusions required further tests with simultaneously multisite observations.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Aerossóis , Pequim , China
11.
Food Chem ; 452: 139608, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754171

RESUMO

Protein from tiger nut meal (TNP) performance high nutritional value. This study optimized the extraction parameters for TNP (DES-TNP) using deep eutectic solvent, with HBD: HBA = 5:1, Liquid: Solid = 11:1, and the moisture content was 15 %. A comprehensive comparison was conducted with the protein extracted using alkali-soluble acid precipitation (ASAE-TNP). DES-TNP demonstrated significantly higher purity (76.21 ± 2.59 %) than ASAE-TNP (67.48 ± 1.11 %). Density functional theory confirmed the successful synthesis of DES and its strong interaction with TNP. Moreover, DES-TNP and ASAE-TNP were different in structure (microscopic, secondary, and tertiary) and molecular weight distribution. The discrepancy contributed to the different functional properties, DES-TNP exhibiting better solubility, emulsification and foaming properties at pH13 compared to ASAE-TNP. For nutritional properties, DES-TNP and ASAE-TNP exhibited similar amino acid composition and digestibility, but the total amino acid content of DES-TNP was higher. This study presented a novel method for the extraction and comprehensive utilization of TNP.


Assuntos
Álcalis , Solventes Eutéticos Profundos , Valor Nutritivo , Proteínas de Plantas , Solubilidade , Proteínas de Plantas/química , Álcalis/química , Solventes Eutéticos Profundos/química , Nozes/química , Aminoácidos/química , Precipitação Química , Peso Molecular
12.
Food Res Int ; 186: 114394, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729737

RESUMO

The ability of spices (bay leaf, star anise, and red pepper) and their characteristic phenolic compounds (quercetin, kaempferol, and capsaicin) to inhibit Heterocyclic aromatic amines (HAAs) in roasted beef patties were compared. Density functional theory (DFT) was used to reveal phenolic compounds interacting with HAAs-related intermediates and free radicals to explore possible inhibitory mechanisms for HAAs. 3 % red chili and 0.03 % capsaicin reduced the total HAAs content by 57.09 % and 68.79 %, respectively. DFT demonstrated that this was due to the stronger interaction between capsaicin and the ß-carboline HAAs intermediate (Ebind = -32.95 kcal/mol). The interaction between quercetin and phenylacetaldehyde was found to be the strongest (Ebind = -17.47 kcal/mol). Additionally, DFT indicated that capsaicin reduced the carbonyl content by transferring hydrogen atoms (HAT) to eliminate HO·, HOO·, and carbon-centered alkyl radicals. This study provided a reference for the development of DFT in the control of HAAs.


Assuntos
Aminas , Culinária , Teoria da Densidade Funcional , Compostos Heterocíclicos , Fenóis , Aminas/química , Bovinos , Compostos Heterocíclicos/química , Animais , Fenóis/análise , Capsaicina/química , Capsaicina/farmacologia , Capsaicina/análogos & derivados , Capsicum/química , Escatol/análise , Especiarias/análise , Carne Vermelha/análise , Produtos da Carne/análise , Temperatura Alta , Quercetina/análogos & derivados , Quercetina/análise , Quercetina/farmacologia
13.
Environ Pollut ; 322: 121154, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736562

RESUMO

Air quality has significantly improved in China; however, new challenges emerge when dust weather is combined with haze pollution during spring in northern China. On March 15, 2021, an extremely severe sandstorm occurred in Beijing, with hourly maximum PM10 and PM2.5 concentrations reaching 5267.7 µg m-3 and 963.9 µg m-3, respectively. Continuous sandstorm events usually lead to complicated pollution status in spring. Three pollution types were identified disregarding the time sequence throughout March. The secondary formation type was dominant, with high ratios of PM2.5/PM10 (mean 74%) and PM1/PM2.5 (mean 52%). This suggests that secondary transformations are the primary cause of heavy pollution, even during the dry seasons. Sandstorm type resulted in dramatic PM10 levels, with a noticeable decrease in PM2.5/PM10 levels (27%), although PM2.5 levels remain high. The transitional pollution type was distinguished by an independent increase in PM10 levels, although PM2.5 and PM1 levels differed from the PM10 levels. Throughout March, the sulfur oxidation rate varied considerably, with high levels during most periods (mean 0.52). A strong correlation indicated that relative humidity was the primary variable promoting the formation of secondary sulfate. Sandstorms promote heterogeneous reactions by providing abundant reaction surfaces from mineral particles, therefore aggravating secondary pollution. The sandstorm air mass from the northwest passing through the sand sources of Mongolia carried not only crustal matter but also organic components, such as bioaerosols, resulting in a sharp increase in the organic carbon in PM2.5.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Pequim , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental , China , Estações do Ano , Aerossóis/análise
14.
Environ Pollut ; 318: 120846, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496065

RESUMO

Organic aerosols (OA) are major components of fine particulate matter, yet their formation mechanism remains unclear, especially in polluted environments. In this study, we investigated the diurnal chemical compositions and formation processes of OA in carbonaceous particles during winter in Beijing using aerosol time-of-flight mass spectrometry. We found that 84.5% of the measured carbonaceous particles underwent aging processes, characterized by larger diameter and more secondary species compared to fresh carbonaceous particles, and presented different chemical compositions of OA in the daytime and nighttime. During the day, under high O3 concentrations, organosulfates and oligomers existed in the aged carbonaceous particles, which were mixed with a higher signal of nitrate compared with sulfate. At night, under high relative humidity, distinct spectral signatures of hydroxymethanesulfonate and organic nitrogen compounds, and minor signals of other hydroxyalkylsulfonates and high molecular weight organic compounds were present in the aged carbonaceous particles, which were mixed with a higher signal of sulfate compared with nitrate. Our results indicated that photochemistry contributed to OA formation in the daytime, while aqueous chemistry played an important role in OA formation in the nighttime. The findings can help improve the performance of air quality and climate models on OA simulation.


Assuntos
Poluentes Atmosféricos , Pequim , Poluentes Atmosféricos/análise , Nitratos/análise , Monitoramento Ambiental , Material Particulado/análise , Compostos Orgânicos/análise , Estações do Ano , Aerossóis/análise , Sulfatos/análise , China
15.
Environ Monit Assess ; 184(12): 7235-46, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22415844

RESUMO

This study firstly focused on non-methane hydrocarbons (NMHCs) during three successive days with haze episode (16-18 August 2006) in Beijing. Concentrations of alkanes, alkenes, aromatic hydrocarbons, and ethyne all peaked at traffic rush hour, implying vehicular emission; and alkanes also peaked at non-traffic rush hour in the daytime, implying additional source. Especially, alkanes and aromatics clearly showed higher levels in the nighttime than that in the daytime, implying their active photochemical reactions in the daytime. Correlation coefficients (R (2)) showed that propane, n-butane, i-butane, ethene, propene, and benzene correlated with ethyne (R (2) = 0.61-0.66), suggesting that their main source is vehicular emission; 2-methylpentane and n-hexane correlated with i-pentane (R (2) = 0.61-0.64), suggesting that gasoline evaporation is their main source; and ethylbezene, m-/p-xylene, and o-xylene correlated with toluene (R (2) = 0.60-0.79), suggesting that their main source is similar to that of toluene (e.g., solvent usage). The R (2) of ethyne, i-pentane, and toluene with total NMHCs were 0.58, 0.76, and 0.60, respectively, indicating that ambient hydrocarbons are associated with vehicular emission, gasoline evaporation, and solvent usage. The sources of other hydrocarbons (e.g., ethane) might be natural gas leakage, biogenic emission, or long-range transport of air pollutants. Measured higher mean B/T ratio (0.78 ± 0.27) was caused by the more intensive photochemical activity of toluene than benzene, still indicating the dominant emission from vehicles.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluição do Ar/estatística & dados numéricos , Atmosfera/química , Butanos/análise , China , Hidrocarbonetos/análise , Pentanos/análise , Emissões de Veículos/análise , Xilenos/análise
16.
J Hazard Mater ; 424(Pt C): 127601, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34763284

RESUMO

Catalytic oxidation is promising in removing atmospheric pollutants to address serious environmental concerns. Supported Pt-based catalysts (e.g., Pt/CeO2) are most effective for catalytic removal of atmospheric pollutants. However, the catalytic performance is largely affected by the oxidation state of Pt, oxygen vacancy and metal-support interaction (MSI). Herein, two different types of Pt/CeO2 catalyst were fabricated via surfactant-assisted strategy and treated in different annealing atmospheres, which was applied to carbon monoxide (CO) and toluene (C7H8) oxidation, respectively. The results reveal that the as-synthesized Pt/CeO2-NH catalyst is favorable to C7H8 oxidation, whereas the contrast Pt/CeO2-AH is favorable to CO oxidation. Meanwhile, Pt/CeO2-NH catalyst also has high thermal stability facing high temperature (e.g., 400 °C). Various characterizations, such as in-situ Raman, XPS, CO-DRIFTS and XANES, clarifies that the Pt/CeO2-NH catalyst has a higher surface Pt0 proportion, a weak MSI and more oxygen vacancies. The corresponding theoretical calculation also supports the experimental results. These results advance efficient regulation and fundamental understanding of MSI, and the design of heterogeneous catalysts.

17.
Sci Total Environ ; 838(Pt 1): 155970, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588831

RESUMO

During the coronavirus disease 2019 (COVID-19) lockdown in 2020, severe haze pollution occurred in the North China Plain despite the significant reduction in anthropogenic emissions, providing a natural experiment to explore the response of haze pollution to the reduction of human activities. Here, we study the characteristics and causes of haze pollution during the COVID-19 outbreak based on comprehensive field measurements in Beijing during January and February 2020. After excluding the Spring Festival period affected by fireworks activities, we found the ozone concentrations and the proportion of sulfate and nitrate in PM2.5 increased during the COVID-19 lockdown compared with the period before the lockdown, and sulfate played a more important role. Heterogeneous chemistry and photochemistry dominate the formation of sulfate and nitrate during the whole campaign, respectively, and the heterogeneous formation of nitrate at night was enhanced during the lockdown. The coeffects of more reductions in NOx than VOCs, weakened titration of NO, and increased temperature during the lockdown led to the increase in ozone concentrations, thereby promoting atmospheric oxidation capacity and photochemistry. In addition, the increase in relative humidity during the lockdown facilitated heterogeneous chemistry. Our results indicate that unbalanced emission reductions and adverse meteorological conditions induce the formation of secondary pollutants during the COVID-19 lockdown haze, and the formulation of effective coordinated emission-reduction control measures for PM2.5 and ozone pollution is needed in the future, especially the balanced control of NOx and VOCs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Ambientais , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Pequim/epidemiologia , COVID-19/epidemiologia , China/epidemiologia , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Nitratos , Ozônio/análise , Material Particulado/análise , Sulfatos
18.
J Oncol ; 2022: 7346460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342412

RESUMO

Renal cell carcinoma (RCC) serves as a prevalent malignancy of urinary system and presents severe mortality and increasing incidence. Long noncoding RNAs (lncRNAs) have demonstrated critical roles in RCC development. Here, we were interested in the function of MMP2-AS1 during RCC progression. We observed that MP2-AS1 localized in both nucleus and cytoplasm of RCC cells using fluorescent in situ hybridization (FISH). The cell viability, proliferation, invasion, and migration of RCC cells were reduced by the depletion of MMP2-AS1. The MMP2-AS1 depletion-inhibited viability, proliferation, migration, and invasion of RCC cells were rescued by the overexpression of MMP2 in vitro. Consistently, the tumor growth of RCC cells was repressed by the depletion of MMP2-AS1 in the nude mice, while the overexpression of MMP2 could reverse this effect in vivo. Mechanically, we predicted the potential interaction of miR-34c-5p with both MMP2-AS1 and MMP2. The treatment of miR-34c-5p mimic reduced the luciferase activity of MMP2-AS1 and MMP2 3'UTR. The depletion of MMP2-AS1 enhanced miR-34c-5p expression and the expression of MMP2 was inhibited by miR-34c-5p in RCC cells. The protein levels of MMP2 were downregulated by MMP2-AS1 knockdown, while the inhibitor of miR-34c-5p rescued the expression of MMP2 in the cells. The treatment of miR-34c-5p mimic attenuated the cell viability, proliferation, invasion, and migration of RCC cells, in which MMP2 overexpression restored the phenotypes. MMP2-AS1 depletion-attenuated viability, proliferation, migration, and invasion of RCC cells were reversed by miR-34c-5p inhibitor. We concluded that MMP2-AS1 contributed to progression of renal cell carcinoma by modulating miR-34c-5p/MMP2 axis.

19.
Chemosphere ; 286(Pt 2): 131807, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371362

RESUMO

An online field observation was conducted in Zibo, China from September 1, 2018 to February 28, 2019, covering autumn and winter. Within the investigation period, the mean mass concentrations of PM1, PM2.5, and PM10 were 49.3, 86.1, and 136.5 µg m-3, respectively. OA (organic aerosol) was the most dominant species in PM2.5 (39.7 %), followed by NO3- (26.3 %) and SO42- (17.0 %), indicating the importance of secondary species on PM2.5. Increase of particles were always accompanied increasing relative humidity (RH), slow wind, and increasing precursors, contributing the secondary transition. SO42- was more susceptible to RH, indicating the dominant role of heterogeneous processes in its secondary formation. As RH increased, its strengthening effect on SO42- increased as well. Photochemistry was the main contributor to the secondary formation of NO3-. The morning and evening rush hours determined the peak of absolute NO3- throughout the day. By classifying particles into three bins, we found that smaller particles were the biggest contributors (larger PM1/PM2.5) of slight pollution (35 < PM2.5<115 µg m-3). When severe haze occurred, PM2.5 contributed more than particles of other sizes (PM1 or PM10). Secondary species contributed more to particles within 2.5 µm but less to larger particles. PM1/PM2.5 was high from 9:00 to 15:00, indicating the strong effect of photochemistry on smaller particles. In comparison, larger particles favored more humid conditions. NO3- preferentially existed in larger particles because the hygroscopicity of preexisting species (SO42- and NO3-) promoted partitioning. SO42- appeared a stable diurnal variation, replying its stable contribution to particles of different sizes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
20.
ACS Appl Mater Interfaces ; 14(2): 2860-2870, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34995451

RESUMO

A diesel oxidation catalyst (DOC) is installed upstream of an exhaust after-treatment line to remove CO and hydrocarbons and generate NO2. The catalyst should possess both good oxidation ability and thermal stability because it sits after the engine. We present a novel high-performance DOC with high steam resistance and thermal stability. A selective dissolution method is adopted to modify the surface physicochemical environment of CeO2-SmMn2O5. The X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, Raman, electron paramagnetic resonance, hydrogen temperature-programmed reduction, and temperature-programmed desorption results reveal that surface Sm cations are partially removed with the exposure of more Mn4+ and Ce3+ cations and the presence of active surface oxygen species. This mechanism benefits the oxygen transformation from Ce to Mn and promotes the Ce3+ + Mn4+ ↔ Ce4+ + Mn3+ redox cycle according to the in situ near-ambient pressure X-ray photoelectron spectroscopy and in situ diffuse reflectance infrared Fourier transformation spectroscopy results. Under laboratory-simulated diesel combustion conditions, the catalyst demonstrates excellent low-temperature oxidation catalytic activity (CO and C3H6 conversion: T100 = 250 °C) compared to a Pt-based catalyst (CO and C3H6 conversion: T100 = 310 °C) with a WHSV of 120,000 mL g-1 h-1. Specifically, NO conversion reaches 68% when the temperature is approximately 300 °C.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa