Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 48(3): 353-64, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23022383

RESUMO

MicroRNAs typically function at the level of posttranscriptional gene silencing within the cytoplasm; however, increasing evidence suggests that they may also function in nuclear, Argonaut-containing complexes, to directly repress target gene transcription. We have investigated the role of microRNAs in mediating endoplasmic reticulum (ER) stress responses. ER stress triggers the activation of three signaling molecules: Ire-1α/ß, PERK, and ATF6, whose function is to facilitate adaption to the ensuing stress. We demonstrate that PERK induces miR-211, which in turn attenuates stress-dependent expression of the proapoptotic transcription factor chop/gadd153. MiR-211 directly targets the proximal chop/gadd153 promoter, where it increases histone methylation and represses chop expression. Maximal chop accumulation ultimately correlates with miR-211 downregulation. Our data suggest a model in which PERK-dependent miR-211 induction prevents premature chop accumulation and thereby provides a window of opportunity for the cell to re-establish homeostasis prior to apoptotic commitment.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Fator de Transcrição CHOP/genética , eIF-2 Quinase/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Estresse do Retículo Endoplasmático/genética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Metilação , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Células NIH 3T3 , Fosforilação , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tapsigargina/farmacologia , Fator de Transcrição CHOP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , eIF-2 Quinase/metabolismo
2.
Mol Cell ; 34(3): 298-310, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19450528

RESUMO

A hallmark of the cellular response to DNA double-strand breaks (DSBs) is histone H2AX phosphorylation in chromatin to generate gamma-H2AX. Here, we demonstrate that gamma-H2AX densities increase transiently along DNA strands as they are broken and repaired in G1 phase cells. The region across which gamma-H2AX forms does not spread as DSBs persist; rather, gamma-H2AX densities equilibrate at distinct levels within a fixed distance from DNA ends. Although both ATM and DNA-PKcs generate gamma-H2AX, only ATM promotes gamma-H2AX formation to maximal distance and maintains gamma-H2AX densities. MDC1 is essential for gamma-H2AX formation at high densities near DSBs, but not for generation of gamma-H2AX over distal sequences. Reduced H2AX levels in chromatin impair the density, but not the distance, of gamma-H2AX formed. Our data suggest that H2AX fuels a gamma-H2AX self-reinforcing mechanism that retains MDC1 and activated ATM in chromatin near DSBs and promotes continued local phosphorylation of H2AX.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Linfócitos B/citologia , Linfócitos B/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Endonucleases , Fase G1/fisiologia , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T/genética , Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Recombinação Genética , Timo/citologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
3.
Nature ; 467(7314): 479-83, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20865002

RESUMO

Origins of replication are activated throughout the S phase of the cell cycle such that some origins fire early and others fire late to ensure that each chromosome is completely replicated in a timely fashion. However, in response to DNA damage or replication fork stalling, eukaryotic cells block activation of unfired origins. Human cells derived from patients with ataxia telangiectasia are deficient in this process due to the lack of a functional ataxia telangiectasia mutated (ATM) kinase and elicit radioresistant DNA synthesis after γ-irradiation(2). This effect is conserved in budding yeast, as yeast cells lacking the related kinase Mec1 (ATM and Rad3-related (ATR in humans)) also fail to inhibit DNA synthesis in the presence of DNA damage. This intra-S-phase checkpoint actively regulates DNA synthesis by inhibiting the firing of late replicating origins, and this inhibition requires both Mec1 and the downstream checkpoint kinase Rad53 (Chk2 in humans). However, the Rad53 substrate(s) whose phosphorylation is required to mediate this function has remained unknown. Here we show that the replication initiation protein Sld3 is phosphorylated by Rad53, and that this phosphorylation, along with phosphorylation of the Cdc7 kinase regulatory subunit Dbf4, blocks late origin firing in Saccharomyces cerevisiae. Upon exposure to DNA-damaging agents, cells expressing non-phosphorylatable alleles of SLD3 and DBF4 (SLD3-m25 and dbf4-m25, respectively) proceed through the S phase faster than wild-type cells by inappropriately firing late origins of replication. SLD3-m25 dbf4-m25 cells grow poorly in the presence of the replication inhibitor hydroxyurea and accumulate multiple Rad52 foci. Moreover, SLD3-m25 dbf4-m25 cells are delayed in recovering from transient blocks to replication and subsequently arrest at the DNA damage checkpoint. These data indicate that the intra-S-phase checkpoint functions to block late origin firing in adverse conditions to prevent genomic instability and maximize cell survival.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Origem de Replicação/fisiologia , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2 , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Hidroxiureia/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Origem de Replicação/efeitos dos fármacos , Fase S/efeitos dos fármacos , Fase S/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo
4.
Mol Pharmacol ; 83(3): 594-604, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23229510

RESUMO

The Integrated Stress Response (ISR) is a signaling program that enables cellular adaptation to stressful conditions like hypoxia and nutrient deprivation in the tumor microenvironment. An important effector of the ISR is activating transcription factor 4 (ATF4), a transcription factor that regulates genes involved in redox homeostasis and amino acid metabolism and transport. Because both inhibition and overactivation of the ISR can induce tumor cell death, modulators of ATF4 expression could prove to be clinically useful. In this study, chemical libraries were screened for modulators of ATF4 expression. We identified one compound, E235 (N-(1-benzyl-piperidin-4-yl)-2-(4-fluoro-phenyl)-benzo[d]imidazo[2,1-b]thiazole-7-carboxamide), that activated the ISR and dose-dependently increased levels of ATF4 in transformed cells. A dose-dependent decrease in viability was observed in several mouse and human tumor cell lines, and knockdown of ATF4 significantly increased the antiproliferative effects of E235. Interestingly, low µM doses of E235 induced senescence in many cell types, including HT1080 human fibrosarcoma and B16F10 mouse melanoma cells. E235-mediated induction of senescence was not dependent on p21 or p53; however, p21 conferred protection against the growth inhibitory effects of E235. Treatment with E235 resulted in an increase in cells arrested at the G2/M phase with a concurrent decrease in S-phase cells. E235 also activated DNA damage response signaling, resulting in increased levels of Ser15-phosphorylated p53, γ-H2AX, and phosphorylated checkpoint kinase 2 (Chk2), although E235 does not appear to cause physical DNA damage. Induction of γ-H2AX was abrogated in ATF4 knockdown cells. Together, these results suggest that modulation of the ISR pathway with the small molecule E235 could be a promising antitumor strategy.


Assuntos
Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Feminino , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/genética , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Humanos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
5.
Nature ; 446(7137): 806-10, 2007 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-17314980

RESUMO

Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that is largely invisible to protein-protein interaction data sets. Here we present an epistatic miniarray profile (E-MAP) consisting of quantitative pairwise measurements of the genetic interactions between 743 Saccharomyces cerevisiae genes involved in various aspects of chromosome biology (including DNA replication/repair, chromatid segregation and transcriptional regulation). This E-MAP reveals that physical interactions fall into two well-represented classes distinguished by whether or not the individual proteins act coherently to carry out a common function. Thus, genetic interaction data make it possible to dissect functionally multi-protein complexes, including Mediator, and to organize distinct protein complexes into pathways. In one pathway defined here, we show that Rtt109 is the founding member of a novel class of histone acetyltransferases responsible for Asf1-dependent acetylation of histone H3 on lysine 56. This modification, in turn, enables a ubiquitin ligase complex containing the cullin Rtt101 to ensure genomic integrity during DNA replication.


Assuntos
Cromossomos Fúngicos/metabolismo , Epistasia Genética , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilação , Segregação de Cromossomos , Cromossomos Fúngicos/genética , Reparo do DNA , Replicação do DNA , Histonas/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Ligação Proteica , Curva ROC , Saccharomyces cerevisiae/citologia , Transcrição Gênica
6.
Clin Cancer Res ; 21(4): 675-9, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25182515

RESUMO

The endoplasmic reticulum (ER) is a highly specialized organelle that provides an oxidizing, profolding environment for protein synthesis and maturation. The ER also hosts a dynamic signaling network that can sense and respond to physiologic changes that affect its environment, thereby influencing overall cell fate. Limitation of nutrients and oxygen have a direct effect on the efficiency of protein folding in the ER, and are classic inducers of the ER resident signaling pathway, the unfolded protein response (UPR). Not only does the UPR regulate ER homeostasis in normal cells experiencing such stress, but strong evidence also suggests that tumor cells can co-opt the cytoprotective aspects of this response to survive the hypoxic, nutrient-restricted conditions of the tumor microenvironment.


Assuntos
Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Retículo Endoplasmático/metabolismo , Humanos
7.
Cancer Biol Ther ; 15(8): 1106-11, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24846185

RESUMO

Restriction of nutrients and oxygen in the tumor microenvironment disrupts ER homeostasis and adaptation to such stress is mediated by the key UPR effector PERK. Given its pro-tumorigenic activity, significant efforts have been made to elucidate the molecular mechanisms that underlie PERK function. Chemical-genetic approaches have recently proven instrumental in pathway mapping and interrogating kinase function. To enable a detailed study of PERK signaling we have generated an analog-sensitive PERK allele that accepts N(6)-alkylated ATP analogs. We find that this allele can be regulated by bulky ATP-competitive inhibitors, confirming the identity of the PERK gatekeeper residue as methionine 886. Furthermore, this analog-sensitive allele can be used to specifically label substrates with thiophosphate both in vitro and in cells. These data highlight the potential for using chemical-genetic techniques to identify novel PERK substrates, thereby providing an expanded view of PERK function and further definition of its signaling networks.


Assuntos
eIF-2 Quinase/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/farmacologia , Alelos , Linhagem Celular Tumoral , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metionina/metabolismo , Mutação , eIF-2 Quinase/genética
8.
Science ; 329(5996): 1201-5, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20647423

RESUMO

The mammalian adenosine monophosphate-activated protein kinase (AMPK) is a serine-threonine kinase protein complex that is a central regulator of cellular energy homeostasis. However, the mechanisms by which AMPK mediates cellular responses to metabolic stress remain unclear. We found that AMPK activates transcription through direct association with chromatin and phosphorylation of histone H2B at serine 36. AMPK recruitment and H2B Ser36 phosphorylation colocalized within genes activated by AMPK-dependent pathways, both in promoters and in transcribed regions. Ectopic expression of H2B in which Ser36 was substituted by alanine reduced transcription and RNA polymerase II association to AMPK-dependent genes, and lowered cell survival in response to stress. Our results place AMPK-dependent H2B Ser36 phosphorylation in a direct transcriptional and chromatin regulatory pathway leading to cellular adaptation to stress.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Estresse Fisiológico , Transcrição Gênica , Proteínas Quinases Ativadas por AMP/química , Adaptação Fisiológica , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Ativação Enzimática , Regulação da Expressão Gênica , Histonas/química , Humanos , Camundongos , Fosforilação , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
10.
Cell Cycle ; 5(22): 2561-5, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17106263

RESUMO

Histone modifications have been implicated in both DNA repair and checkpoint-mediated responses to DNA damage. Recently much attention has focused on the acetylation of H3 K56. Indeed, this modification is cell cycle-regulated, maintained upon replicative damage in a checkpoint-dependent manner, and is essential for surviving DNA damage. We and others have discovered that two members of the HDAC Sirtuin family, Hst3 and Hst4, negatively regulate H3 K56 acetylation in budding yeast. Additionally, we have shown that these two HDACs are targeted for repression by the DNA damage checkpoint, which is vital for DNA damage tolerance. Discovery that two HDACs are negative regulators of the cellular response to DNA damage and that they target the acetylation of H3 K56 reveals a complex relationship between histone modifications, HDACs, and the DNA damage response. Here, we discuss the recent reports of the regulation of H3 K56-Ac by Hst3 and Hst4 and put forth the critical questions that remain for understanding the intimate, though poorly characterized, connection between chromatin states and genomic maintenance.


Assuntos
Histona Desacetilases/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuínas/metabolismo , Acetilação , Animais , Regulação da Expressão Gênica , Instabilidade Genômica , Histona Desacetilases/genética , Humanos , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Mol Cell ; 23(1): 109-19, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16818235

RESUMO

Histone modifications, including H3 K56 acetylation, have been implicated in DNA damage tolerance. Here, we present evidence that Hst3 and Hst4, two paralogues of the histone deacetylase Sir2, target the cell cycle-regulated acetylation of H3 on K56 and are downregulated during DNA damage in a checkpoint-dependent manner. We show that Hst3 and Hst4 are themselves cell cycle regulated and that their misexpression affects H3 K56-Ac. Moreover, a histone H3 K56R mutation is epistatic to all phenotypes caused by HST3/4 deletion or HST3 overexpression, suggesting that H3K56-Ac is the major target of these histone deacetylases. On examining 18 members of the "Clb2 cluster" of cell cycle-regulated proteins to which Hst3 belongs, we find that two others, Ynl058c and Alk1, are significantly downregulated on DNA damage. Taken together, our data show that Hst3/Hst4 are negative regulators of H3 K56-Ac and that HST3 downregulation by a checkpoint-mediated transcriptional repression system is essential for surviving DNA damage.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Ciclo Celular/genética , Dano ao DNA/fisiologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular , Lisina/genética , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa