Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Clin Monit Comput ; 30(1): 33-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25735263

RESUMO

Endoscopic procedures performed under conscious sedation require careful monitoring of respiratory status to prevent adverse outcomes. This study utilizes a non-invasive respiratory volume monitor (RVM) that provides continuous real-time measurements of minute ventilation (MV), tidal volume and respiratory rate (RR) to assess the adequacy of ventilation during endoscopy. Digital respiratory traces were collected from 51 patients undergoing upper endoscopy with propofol sedation using an impedance-based RVM. Baseline MV for each patient was derived from a 30 s period of quiet breathing prior to sedation (MVBASELINE). Capnography data were also collected. Because RR from capnography was frequently unavailable, the RVM RR's were used for analysis. RR rate values were compared the MV measurements and sensitivity and specificity of RR to predict inadequate ventilation (MV <40 % MVBASELINE) were calculated. Initial analysis revealed that there is a weak correlation between an MV measurement and its corresponding RR measurement (r = 0.05). If MV is an actual indictor of respiratory performance, using RR as a proxy is grossly inadequate. Simulating a variety of RR alarm conditions [4-8 breaths/min (bpm)] showed that a substantial fraction of low MV measurements (MV <40 % MVBASELINE) went undetected (at 8 bpm, >70 % low MV measurements were missed; at 6 bpm, >82 % were missed; and at 4 bpm, >90 % were missed). A cut-off of 6 bpm had a sensitivity of only 18.2 %; while <40 % of all RR alarms would have coincided with a low MV (39.4 % PPV). Low RR measurements alone do not reflect episodes of low MV and are not sufficient for accurate assessment of respiratory status. RVM provides a new way to collect MV measurements which provide more comprehensive data than RR alone. Further work is ongoing to evaluate the use of MV data during procedural sedation.


Assuntos
Endoscopia Gastrointestinal/métodos , Medidas de Volume Pulmonar/métodos , Monitorização Intraoperatória/métodos , Ventilação Pulmonar , Taxa Respiratória , Feminino , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
J Clin Monit Comput ; 29(2): 223-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25037938

RESUMO

Continuous respiratory assessment is especially important during post-operative care following extubation. Respiratory depression and subsequent adverse outcomes can arise due to opioid administration and/or residual anesthetics. A non-invasive respiratory volume monitor (RVM) has been developed that provides continuous, real-time, measurements of minute ventilation (MV), tidal volume (TV), and respiratory rate (RR) via a standardized set of thoracic electrodes. Previous work demonstrated accuracy of the RVM versus standard spirometry and its utility in demonstrating response to opioids in postoperative patients. This study evaluated the correlation between RVM measurements of MV, TV and RR to ventilator measurements during general anesthesia (GA). Continuous digital RVM and ventilator traces, as well as RVM measurements of MV, TV and RR, were analyzed from ten patients (mean 62.6±7.4 years; body mass index 28.6±5.2 kg/m2) undergoing surgery with GA. RVM data were compared to ventilator data and bias, precision and accuracy were calculated. The average MV difference between the RVM and ventilator was -0.10 L/min (bias: -1.3%, precision: 6.6%, accuracy: 9.0%. The average TV difference was 40 mL (bias: 0.4%, precision: 7.3%, accuracy: 9.1%). The average RR difference was -0.22 breaths/minute (bias: -1.8%, precision: 3.7% accuracy: 4.1%). Correlations between the RVM traces and the ventilator were compared at various points with correlations>0.90 throughout. Pairing the close correlation to ventilator measurements in intubated patients demonstrated by this study with previously described accuracy compared to spirometry in non-intubated patients, the RVM can be considered to have the capability to provide continuity of ventilation monitoring post-extubation This supports the use of real-time continuous RVM measurements to drive post-operative and post-extubation protocols, initiate therapeutic interventions and improve patient safety.


Assuntos
Anestesia Geral/instrumentação , Procedimentos Cirúrgicos Eletivos/instrumentação , Medidas de Volume Pulmonar/instrumentação , Monitorização Intraoperatória/instrumentação , Pletismografia de Impedância/instrumentação , Espirometria/instrumentação , Anestesia Geral/métodos , Procedimentos Cirúrgicos Eletivos/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Medidas de Volume Pulmonar/métodos , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória/métodos , Pletismografia de Impedância/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Método Simples-Cego , Espirometria/métodos
3.
J Clin Med Res ; 9(1): 17-22, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27924170

RESUMO

BACKGROUND: Patients who have undergone cardiac surgery are generally mechanically ventilated postoperatively. Early postoperative extubation is currently recommended in anesthesia guidelines. No current technology can accurately, non-invasively, measure respiratory competence after extubation. Pulse oximetry has been helpful, but this is a late indicator of respiratory compromise. A novel, non-invasive, respiratory volume monitor (RVM) has been shown to deliver accurate continuous, real-time minute ventilation (MV), tidal volume (TV) and respiratory rate (RR) measurements and provide an objective measure of respiratory competence. The RVM will accurately reflect MV, TV and RR in cardiac surgery patients before and after extubation. METHODS: RVM traces were recorded from patients before and after cardiac surgery. Continuous monitoring began on admission to the unit and was ended at 24 h after extubation. RVM-based MV, TV and RR were calculated from 30-s segments. MV, TV and RR were also continuously recorded from the ventilator prior to extubation. The RVM was calibrated to each patient using the readings from the ventilator. RESULTS: During mechanical ventilation, the RVM measured TVs strongly correlated with the ventilator TVs (r = 0.97). Following extubation, the patient's breathing became more erratic and TVs and MVs decreased. Within 1 h, all patients studied showed a marked recovery of MV and TV. CONCLUSIONS: RVM-based MV, TV and RR correlated well with similar data collected from ventilators. After extubation, RVM shows promise as a means to monitor respiratory competence of non-intubated patients, and has implications for use in other settings and improving patient safety.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa