Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Comput Chem ; 45(12): 863-877, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38153839

RESUMO

This work provides a detailed multi-component analysis of aromaticity in monosubstituted (X = CH3, C H 2 - , C H 2 + , NH2, NH-, NH+, OH, O-, and O+) and para-homodisubstituted (X = CH3, CH2, NH2, NH, OH, and O) benzene derivatives. We investigate the effects of substituents using single-reference (B3LYP/DFT) and multireference (CASSCF/MRCI) methods, focusing on structural (HOMA), vibrational (AI(vib)), topological (ELFπ), electronic (MCI), magnetic (NICS), and stability (S0-T1 splitting) properties. The findings reveal that appropriate π-electron-donating and π-electron-accepting substituents with suitable size and symmetry can interact with the π-system of the ring, significantly influencing π-electron delocalization. While the charge factor has a minimal impact on π-electron delocalization, the presence of a pz orbital capable of interacting with the π-electron delocalization is the primary factor leading to a deviation from the typical aromaticity characteristics observed in benzene.

2.
J Comput Chem ; 44(6): 755-765, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36373956

RESUMO

The chemical stability and the low-lying singlet and triplet excited states of BN-n-acenes (n = 1-7) were studied using single reference and multireference methodologies. From the calculations, descriptors such as the singlet-triplet splitting, the natural orbital (NO) occupations and aromaticity indexes are used to provide structural and energetic analysis. The boron and nitrogen atoms form an isoelectronic pair of two carbon atoms, which was used for the complete substitution of these units in the acene series. The structural analysis confirms the effects originated from the insertion of a uniform pattern of electronegativity difference within the molecular systems. The covalent bonds tend to be strongly polarized which does not happen in the case of a carbon-only framework. This effect leads to a charge transfer between neighbor atoms resulting in a more strengthened structure, keeping the aromaticity roughly constant along the chain. The singlet-triplet splitting also agrees with this stability trend, maintaining a consistent gap value for all molecules. The BN-n-acenes molecules possess a ground state with monoconfigurational character indicating their electronic stability. The low-lying singlet excited states have charge transfer character, which proceeds from nitrogen to boron.

3.
J Phys Chem A ; 127(42): 8773-8781, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37839039

RESUMO

In the present work, possible molecular models of the isolated manganese oxides and supported Mn3Ox/Al2O3 structures were built based on small clusters of passivated MnOx. The support was represented as a simplified model of the alumina tetramer cluster based on small fragments of AlOxHy. Combinations of MnOxHy and AlOxHy clusters were made to form both the isolated and supported manganese oxides clusters. The electronic structure of these systems was characterized by ab initio methods (DFT and CASPT2). It was observed that the vertical excitation energy of the isolated and supported Mn3OxHy clusters is significantly lower than that of the alumina cluster model, while both the isolated and supported Mn3OxHy wave function characters are qualitatively similar with respect to the ground state and electronic transition processes, suggesting that the alumina cluster behaves as an inert support, since there is little contribution of this component in the description of the low-lying electronic states. The present study also reports for the first time the spectroscopic parameters of several clusters containing the manganese transition metal atom.

4.
J Phys Chem A ; 127(40): 8287-8296, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788047

RESUMO

The nonplanar character of graphene with a single carbon vacancy (SV) defect is investigated utilizing a pyrene-SV model system by way of complete-active-space self-consistent field theory (CASSCF) and multireference configuration interaction singles and doubles (MR-CISD) calculations. Planar structures were optimized with both methods, showing the 3B1 state to be the ground state with three energetically close states within an energy range of 1 eV. These planar structures constitute saddle points. However, following the out-of-plane imaginary frequency yields more stable (by 0.22 to 0.53 eV) but nonplanar structures of Cs symmetry. Of these, the 1A' structure is the lowest in energy and is strongly deformed into an L shape. Following a further out-of-plane imaginary frequency in the nonplanar structures leads to the most stable but most deformed singlet structure of C1 symmetry. In this structure, a bond is formed between the carbon atom with the dangling bond and a carbon of the cyclopentadienyl ring. This bond stabilizes the structure by more than 3 eV compared to the planar 3B1 structure. Higher excited states were calculated at the MR-CISD level, showing a grouping of four states low in energy and higher states starting around 3 eV.

5.
J Phys Chem A ; 127(45): 9430-9441, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37920974

RESUMO

The phenalene (triangulene) and olympicene molecules belong to the polycyclic aromatic hydrocarbon class, which have attracted substantial technological interest due to their unique electronic properties. Electronic structure calculations serve as a valuable tool in investigating the stability and reactivity of these molecular systems. In the present work, the multireference calculations, namely, the complete active space second-order perturbation theory and multireference averaged quadratic coupled cluster (MR-AQCC), were employed to study the reactivity and stability of phenalene and olympicene isomers, as well as their modified structures where the sp3-carbon at the borders were removed. The harmonic oscillator model of aromaticity (HOMA) and the nucleus-independent chemical shift as geometric and magnetic indexes calculated with density functional theory were utilized to assess the aromaticity of the studied molecules. These indexes were compared with properties such as the excitation energy and natural orbitals occupation. The reactivity analyzed using the HOMA index combined with MR-AQCC revealed the radical character of certain structures as well as the weakening of their aromaticity. Moreover, the results suggest that the removal of sp3-carbon atoms and the addition of hydrogen atoms did not alter the π network and the excitation energies of the phenalene molecules.

6.
J Chem Phys ; 154(24): 244113, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241346

RESUMO

The reactivity of gold has been investigated for a long time. Here, we performed an in-depth analysis of relativistic effects over the chemical kinetic properties of elementary reactions associated with methane activation by gold(I) cations, CH4 + Au+ ↔ AuCH2 + + H2. The global reaction is modeled as a two-step process, CH4 + Au+ ↔ HAuCH3 + ↔ AuCH2 + + H2. Moreover, the barrierless dissociation of the initial adduct between reactants, AuCH4 +, is discussed as well. Higher-order relativistic treatments are used to provide corrections beyond the commonly considered scalar effects of relativistic effective core potentials (RECPs). Although the scalar relativistic contributions predominate, lowering the forward barrier heights by 48.4 and 36.1 kcal mol-1, the spin-orbit coupling effect can still provide additional reductions of these forward barrier heights by as much as 9% (1.0 and 2.2 kcal mol-1). The global reaction proceeds rapidly at low temperatures to the intermediate attained after the first hydrogen transfer, HAuCH3 +. The relativistic corrections beyond the ones from RECPs are still able to double the rate constant of the CH4 + Au+ → HAuCH3 + process at 300 K, while the reverse reaction becomes five times slower. The formation of global products from this intermediate only becomes significant at much higher temperatures (∼1500 K upward). The scalar relativistic contributions decrease the dissociation energy of the initial adduct, AuCH4 +, into the global products by 105.8 kcal mol-1, while the spin-orbit effect provides an extra lowering of 1.8 kcal mol-1.

7.
Chem Rev ; 118(15): 7293-7361, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30040389

RESUMO

Understanding the properties of electronically excited states is a challenging task that becomes increasingly important for numerous applications in chemistry, molecular physics, molecular biology, and materials science. A substantial impact is exerted by the fascinating progress in time-resolved spectroscopy, which leads to a strongly growing demand for theoretical methods to describe the characteristic features of excited states accurately. Whereas for electronic ground state problems of stable molecules the quantum chemical methodology is now so well developed that informed nonexperts can use it efficiently, the situation is entirely different concerning the investigation of excited states. This review is devoted to a specific class of approaches, usually denoted as multireference (MR) methods, the generality of which is needed for solving many spectroscopic or photodynamical problems. However, the understanding and proper application of these MR methods is often found to be difficult due to their complexity and their computational cost. The purpose of this review is to provide an overview of the most important facts about the different theoretical approaches available and to present by means of a collection of characteristic examples useful information, which can guide the reader in performing their own applications.

8.
J Phys Chem A ; 124(2): 454-463, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31851825

RESUMO

With the rise of cluster-assembled materials, an index that is able to rank and identify stable clusters or molecules is of great interest in materials sciences and engineering. In the present work, we applied a stability ranking function (ε3) in nanoclusters formed by simple metals (Na, Mg), main group elements (Al), or transition metals (Ti, Cu). The ε3 function parameters are molecular properties derived from the wave function. These parameters can be divided into kinetic and thermodynamic descriptors, in which the kinetic descriptors are the ionization potential and electronic excitation energy, while the atomization free Gibbs energy is the thermodynamic one. This simple ε3 function was able to identify the possible magic numbers of the studied clusters across the periodic table in a good agreement with previous experimental and theoretical works.

9.
J Phys Chem A ; 124(51): 10717-10725, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33320001

RESUMO

The rates of numerous activated reactions between neutral species increase at low temperatures through quantum mechanical tunneling of light hydrogen atoms. Although tunneling processes involving molecules or heavy atoms are well known in the condensed phase, analogous gas-phase processes have never been demonstrated experimentally. Here, we studied the activated CH + CO2 → HCO + CO reaction in a supersonic flow reactor, measuring rate constants that increase rapidly below 100 K. Mechanistically, tunneling is shown to occur by CH insertion into the C-O bond, with rate calculations accurately reproducing the experimental values. To exclude the possibility of H-atom tunneling, CD was used in additional experiments and calculations. Surprisingly, the equivalent CD + CO2 reaction accelerates at low temperature as zero-point energy effects remove the barrier to product formation. In conclusion, heavy-particle tunneling effects might be responsible for the observed reactivity increase at lower temperatures for the CH + CO2 reaction, while the equivalent effect for the CD + CO2 reaction results instead from a submerged barrier with respect to reactants.

10.
J Chem Phys ; 152(13): 134110, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268762

RESUMO

The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview.

11.
Inorg Chem ; 58(21): 14777-14789, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31647226

RESUMO

To better understand why hypervalent F, O, N, C, and B compounds are rarely stable, we carried out a systematic study of 28 systems, including anionic, cationic, and neutral molecules, held together by covalent, hypervalent, and noncovalent bonds. Molecular geometries, frequencies, atomic charges, electrostatic potentials, energy and electron densities, Mayer bond orders, local stretching force constants, and bond strength orders (BSOs) were derived from high accuracy CCSD(T) calculations and utilized to compare the strength and nature of hypervalent bonds with other types of bonds. All hypervalent molecules studied in this work were found to be either first-order transition states or unstable to dissociation, with F3- and OF3- as the only exceptions. For several systems, we found that a weak noncovalent bonded complex is more stable than a hypervalent one, due to the high energetic cost to accommodate an extra ligand, which can surpass the stability gained by 3c-4e bonding.

12.
Phys Chem Chem Phys ; 21(18): 9077-9088, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30869712

RESUMO

The study of electronically excited states of stacked polycyclic aromatic hydrocarbons (PAHs) is of great interest due to promising applications of these compounds as luminescent carbon nanomaterials such as graphene quantum dots (GQDs) and carbon dots (CDs). In this study, the excited states and excitonic interactions are described in detail based on four CD model dimer systems of pyrene, coronene, circum-1-pyrene and circum-1-coronene. Two multi-reference methods, DFT/MRCI and SC-NEVPT2, and two single-reference methods, ADC(2) and CAM-B3LYP, have been used for excited state calculations. The DFT/MRCI method has been used as a benchmark method to evaluate the performance of the other ones. All methods produce useful lists of excited states. However, an overestimation of excitation energies and an inverted ordering of states, especially concerning the bright HOMO-LUMO excitation, are observed. In the pyrene-based systems, the first bright state appears among the first four states, whereas the number of dark states is significantly larger for the coronene-based systems. Fluorescence emission properties are addressed by means of geometry optimization in the S1 state. The inter sheet distances for the S1 state decrease in comparison to the corresponding ground-state values. These reductions are largest for the pyrene dimer and decrease significantly for the larger dimers. Several minima have been determined on the S1 energy surface for most of the dimers. The largest variability in emission energies is found for the pyrene dimer, whereas in the other cases a more regular behavior of the emission spectra is observed.

13.
J Phys Chem A ; 123(41): 8968-8975, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31536345

RESUMO

The potential energy curves (PECs) for the interaction of 3CH2 with 3O2 in singlet and triplet potential energy surfaces (PESs) leading to singlet and triplet Criegee intermediates (CH2OO) are studied using electronic structure calculations. The bonding mechanism is interpreted by analyzing the ground state multireference configuration interaction (MRCI) wave function of the reacting species and at all points along the PES. The interaction of 3CH2 with 3O2 on the singlet surface leads to a flat long-range attractive PEC lacking any maxima or minima along the curve. The triplet surface stems into a maximum along the curve resulting in a transition state with an energy barrier of 5.3 kcal/mol at CASSCF(4,4)/cc-pVTZ level. The resulting 3CH2OO is less stable than the 1CH2OO. In this study, the biradical character (ß) is used as a measure to understand the difference in the topology of the singlet and triplet PECs and the relation of the biradical nature of the species with their structures. The 3CH2OO has a larger biradical character than 1CH2OO, and because of the larger bond order of 1CH2OO, the C-O covalent bond becomes harder to break, thereby stabilizing 1CH2OO. Thus, this study provides insights into the shape of the PEC obtained from the reaction between 3CH2 and 3O2 in terms of their bonding nature and from the shape of the curves, the temperature dependence or independence of the rate of the reaction is discussed.

14.
J Phys Chem A ; 123(1): 247-256, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30514087

RESUMO

The progressive scaling down of the silicon-based electronics has allowed to develop devices at nanometer scale, requiring new engineering techniques guided by fundamental chemical and physical concepts. Particularly, the nanostructured cluster systems are promising materials since their physical-chemical properties are sensitive to its shape, size, and chemical components, such that completely different materials can be produced by the simple addition or removal of a single atom. These size-tunable properties can open a new area in materials science and engineering. In the present work, quantum chemical methods were used to study the chemical substitution effects caused by subvalent (aluminum) and supervalent (phosphorus) atoms in the physical-chemical properties of some small silicon clusters, which demonstrate high stability, called magic numbers. The changes in the electronic structure and chemical acceptance to the dopants were evaluated with respect to ionization potential, electronic excitation energy, stability, and reactivity parameters. Taken together, these results enable to identify the most stable silicon-doped clusters. Regarding electrophilic reactions, Si10P is the most favorable system, while for nucleophilic reactions, none of the doped clusters resulted in higher stability.

15.
J Chem Phys ; 150(12): 124302, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30927896

RESUMO

Five paradigmatic polycyclic aromatic hydrocarbons (PAHs) (pyrene, circum-1-pyrene, coronene, circum-1-coronene, and circum-2-coronene) are used for studying the performance of three single-reference methods {scaled opposite-spin-algebraic diagrammatic construction to second-order [SOS-ADC(2)], time-dependent (TD)-B3LYP, and TD-Coulomb-attenuating method (CAM)-B3LYP} and three multireference (MR) methods [density functional theory/multireference configuration interaction (DFT/MRCI), strongly contracted-n-electron valence state perturbation theory to second order (NEVPT2), and spectroscopy oriented configuration interaction (SORCI)]. The performance of these methods was evaluated by comparison of the calculated vertical excitation energies with experiments, where available. DFT/MRCI performs best and thus was used as a benchmark for other approaches where experimental values were not available. Both TD-B3LYP and NEVPT2 agree well with the benchmark data. SORCI performs better for coronene than for pyrene. SOS-ADC(2) does reasonably well in terms of excitation energies for smaller systems, but the error increases somewhat as the size of the system gets bigger. The natural transition orbital analysis for SOS-ADC(2) results indicated that at least two configurations were essential to characterize most of the lower-case electronic states. TD-CAM-B3LYP gives the largest errors for excitation energies and also gives an incorrect order of the lowest two states in circum-1-pyrene. A strong density increase of dark states was observed in the UV spectra with increasing size except for the lowest few states which remained well separated. An extrapolation of the UV spectra to infinite PAH size for S1, S2, and the first bright state based on the coronene series was made. The extrapolated excitation energies closest to experimental measurements on graphene quantum dots were obtained by TD-CAM-B3LYP.

16.
Chemphyschem ; 19(19): 2492-2499, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30070740

RESUMO

Zethrenes are interesting polycyclic aromatic hydrocarbons (PAHs), which possess unique optoelectronic and magnetic properties because of their singlet open-shell biradicaloid character, making them promising candidates for application in organic electronics. Tuning their properties is a key task in order to develop efficient compounds for practical use by balancing the desired biradicaloid character against its chemical instability. In this work, high-level theoretical multireference methods appropriate for the correct description of polyradicaloid systems are used to develop rules for doping of zethrenes by means of nitrogen taking heptazethrene (HZ) as a benchmark example. The results of the quantum chemical calculations have been concentrated on a series of quantitative descriptors such as unpaired densities and singlet-triplet (S-T) splittings. They clearly indicate different regions in the HZ where N-doping can either lead to strong enhancement of the biradicaloid character or to strong quenching towards a closed shell state. A wide scale of varying open-shell character is accessible from the different doping positions. It is shown that the S-T splittings correlate well with the total number of unpaired electrons in the medium range of biradicaloid character. For pronounced biradical character the S-T splitting decays to about zero with a margin of ±0.15 eV. In the opposite closed-shell limit, much larger S-T splittings of up to 3 eV are computed.

17.
Phys Chem Chem Phys ; 20(30): 20124-20131, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30027955

RESUMO

Membrane-based gas separation technology is of crucial importance in the current economy and nanoporous graphene, given its single-atomic layer, is an essential building-block material to achieve efficiency towards permeability and selectivity for such processes. Classically, pore size is the main feature that governs the diffusion energy barrier. Its nature, nevertheless, is also affected by other non-negligible physical mechanisms not yet discussed. Here we propose a theoretical study on the role of non-covalent interactions towards H2 diffusion through two graphene-based membranes. Symmetry-Adapted Perturbation Theory (SAPT) was used to investigate the total interaction energy and its physically meaningful components (electrostatics, exchange, induction and dispersion). The study reveals the importance of quantum effects such as polarization and electron delocalization in order to counterbalance the abiding idea of pore size being the dominant factor accounting for the energy barrier. These results have important implications for the rational design of efficient nanoporous devices for separation applications.

18.
J Phys Chem A ; 122(21): 4808-4818, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29697979

RESUMO

The reaction of 3CH2 with 3O2 is of fundamental importance in combustion, and the reaction is complex as a result of multiple extremely exothermic product channels. In the present study, direct dynamics simulations were performed to study the reaction on both the singlet and triplet potential energy surfaces (PESs). The simulations were performed at the UM06/6-311++G(d,p) level of theory. Trajectories were calculated at a temperature of 300 K, and all reactive trajectories proceeded through the carbonyl oxide Criegee intermediate, CH2OO, on both the singlet and triplet PESs. The triplet surface leads to only one product channel, H2CO + O(3P), while the singlet surface leads to eight product channels with their relative importance as CO + H2O > CO + OH + H ∼ H2CO + O(1D) > HCO + OH ∼ CO2 + H2 ∼ CO + H2 + O(1D) > CO2 + H + H > HCO + O(1D) + H. The reaction on the singlet PES is barrierless, consistent with experiment, and the total rate constant on the singlet surface is (0.93 ± 0.22) × 10-12 cm3 molecule-1 s-1 in comparison to the recommended experimental rate constant of 3.3 × 10-12 cm3 molecule-1 s-1. The simulation product yields for the singlet PES are compared with experiment, and the most significant differences are for H, CO2, and H2O. The reaction on the triplet surface is also barrierless, inconsistent with experiment. A discussion is given of the need for future calculations to address (1) the barrier on the triplet PES for 3CH2 + 3O2 → 3CH2OO, (2) the temperature dependence of the 3CH2 + 3O2 reaction rate constant and product branching ratios, and (3) the possible non-RRKM dynamics of the 1CH2OO Criegee intermediate.

19.
J Phys Chem A ; 122(49): 9464-9473, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30427678

RESUMO

Aromaticity is a multivariable concept in organic chemistry that plays a central role for understanding the structure, stability, and reactivity of polycyclic aromatic hydrocarbons (PAHs). Several types of PAHs are characterized as singlet biradicaloid species and their chemical stability is intimately linked to the degree of aromatic character. In this study, theoretically designed routes to tune the biradical character (and thereby its chemical stability) of nitrogen-substituted octacenes have been investigated on the basis of the high-level multireference averaged quadratic coupled-cluster MR-AQCC method necessary for the appropriate description of polyradicaloid systems. The influence of nitrogen centers on the aromaticity of octacene is probed through structural (HOMA) and electron localization (ELF) indices by comparing the N- against NH-doping cases. These analyses reveal that the aromaticity and biradical character of octacene is only slightly affected by replacing one pair of CH groups with N atoms, i.e., by N-doping. However, a significant aromatic stabilization can be obtained when NH-doping is applied at the inner octacene rings; this is also accompanied by an overall decrease of the open-shell character, as evidenced by the gradual quenching of the unpaired electrons and increase in the singlet-triplet splittings when the NH doping groups are moved toward the center of the octacene molecule. Our findings aid in the rational design of new PAH compounds with balanced biradicaloid character and chemical stability which is important, e.g., for practical applications in organic solar cells based on the singlet-fission mechanism.

20.
J Phys Chem A ; 122(28): 5905-5910, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29939738

RESUMO

The reaction of methanol (CH3OH) with atomic nitrogen was studied considering three elementary reactions, the hydrogen abstractions from the hydroxyl or methyl groups (R1 and R3, respectively) and the C-O bond break (R2). Thermochemical properties were obtained using ab initio methods and density functional theory approximations with aug-cc-pVXZ (X = T and Q) basis sets. The minimum energy path was built with a dual-level methodology using the BB1K functional as the low-level and the CCSD(T) as the high-level. This surface was used to calculate the thermal rate constants in the frame of variational transitional state theory considering the tunneling effects. Our results indicate the dehydrogenation of the methyl group (R3) as the dominant path with k R3 = 7.5 × 10-27 cm3·molecule-1·s-1 at 300 K. The thermal rate constants were fitted to a modified Arrhenius equation for use in mechanism studies of the methanol decomposition.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa