Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Curr Med Chem ; 30(6): 669-688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35726411

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most common form of dementia, especially in the elderly. Due to the increase in life expectancy, in recent years, there has been an excessive growth in the number of people affected by this disease, causing serious problems for health systems. In recent years, research has been intensified to find new therapeutic approaches that prevent the progression of the disease. In this sense, recent studies indicate that the dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) gene, which is located on chromosome 21q22.2 and overexpressed in Down syndrome (DS), may play a significant role in developmental brain disorders and early onset neurodegeneration, neuronal loss and dementia in DS and AD. Inhibiting DYRK1A may serve to stop the phenotypic effects of its overexpression and, therefore, is a potential treatment strategy for the prevention of ageassociated neurodegeneration, including Alzheimer-type pathology. OBJECTIVE: In this review, we investigate the contribution of DYRK1A inhibitors as potential anti-AD agents. METHODS: A search in the literature to compile an in vitro dataset including IC50 values involving DYRK1A was performed from 2014 to the present day. In addition, we carried out structure-activity relationship studies based on in vitro and in silico data. RESULTS: molecular modeling and enzyme kinetics studies indicate that DYRK1A may contribute to AD pathology through its proteolytic process, reducing its kinase specificity. CONCLUSION: further evaluation of DYRK1A inhibitors may contribute to new therapeutic approaches for AD.


Assuntos
Doença de Alzheimer , Inibidores de Proteínas Quinases , Idoso , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Encéfalo/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Quinases Dyrk
2.
RSC Med Chem ; 13(12): 1644-1656, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36561075

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that is characterized as the main dementia in the elderly. Eighteen pyrazolines were synthesized and evaluated for their inhibitory effects against acetylcholinesterase (AChE) in vitro. Possible interactions between pyrazolines and the enzyme were explored by in silico experiments. Compound 2B of the series was the most active pyrazoline with an IC50 value of 58 nM. Molecular docking studies revealed two important π-π interactions with residues Trp 286 and Tyr 341. A correlation between the HOMO-1 surface and AChE inhibition was observed. ADMET assays demonstrated a good profile for compound 2B. From the abovementioned findings, a new avenue of compound 2B analogues could be explored to develop anti-AD agents.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa