RESUMO
Obesity represents a significant public health concern and is linked to various comorbidities and cognitive impairments. Previous research indicates that elevated body mass index (BMI) is associated with structural changes in white matter (WM). However, a deeper characterization of body composition is required, especially considering the links between abdominal obesity and metabolic dysfunction. This study aims to enhance our understanding of the relationship between obesity and WM connectivity by directly assessing the amount and distribution of fat tissue. Whole-body magnetic resonance imaging (MRI) was employed to evaluate total adipose tissue (TAT), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT), while MR liver spectroscopy measured liver fat content in 63 normal-weight, overweight, and obese males. WM connectivity was quantified using microstructure-informed tractography. Connectome-based predictive modeling was used to predict body composition metrics based on WM connectomes. Our analysis revealed a positive dependency between BMI, TAT, SAT, and WM connectivity in brain regions involved in reward processing and appetite regulation, such as the insula, nucleus accumbens, and orbitofrontal cortex. Increased connectivity was also observed in cognitive control and inhibition networks, including the middle frontal gyrus and anterior cingulate cortex. No significant associations were found between WM connectivity and VAT or liver fat. Our findings suggest that altered neural communication between these brain regions may affect cognitive processes, emotional regulation, and reward perception in individuals with obesity, potentially contributing to weight gain. While our study did not identify a link between WM connectivity and VAT or liver fat, further investigation of the role of various fat depots and metabolic factors in brain networks is required to advance obesity prevention and treatment approaches.
Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Masculino , Humanos , Substância Branca/patologia , Distribuição Tecidual , Imagem Corporal Total , Obesidade/diagnóstico por imagem , Obesidade/complicações , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/metabolismo , Tecido Adiposo/patologiaRESUMO
PURPOSE: Free water in cortical bone is either contained in nearly cylindrical structures (mainly Haversian canals oriented parallel to the bone axis) or in more spherically shaped pores (lacunae). Those cavities have been reported to crucially influence bone quality and mechanical stability. Susceptibility differences between bone and water can lead to water frequency shifts dependent on the geometric characteristics. The purpose of this study is to calculate and measure the frequency distribution of the water signal in MRI in dependence of the microscopic bone geometry. METHODS: Finite element modeling and analytical approaches were performed to characterize the free water components of bone. The previously introduced UTE-FID technique providing spatially resolved FID-spectra was used to measure the frequency distribution pixel-wise for different orientations of the bone axis. RESULTS: The frequency difference between free water in spherical pores and in canals parallel to B0 amounts up to approximately 100 Hz at 3T. Simulated resonance frequencies showed good agreement with the findings in UTE-FID spectra. The intensity ratio of the two signal components (parallel canals and spherical pores) was found to vary between periosteal and endosteal regions. CONCLUSION: Spatially resolved UTE-FID examinations allow the determination of the frequency distribution of signals from free water in cortical bone. This frequency distribution indicates the composition of the signal contributions from nearly spherical cavities and cylindrical canals which allows for further characterization of bone structure and status.
Assuntos
Água Corporal , Simulação por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Água Corporal/diagnóstico por imagem , Algoritmos , Reprodutibilidade dos Testes , Modelos Biológicos , Sensibilidade e Especificidade , Interpretação de Imagem Assistida por Computador/métodos , Água/química , Osso e Ossos/diagnóstico por imagem , Aumento da Imagem/métodos , Análise de Elementos FinitosRESUMO
OBJECTIVE: To prepare and analyze soy-lecithin-agar gels for non-toxic relaxometry phantoms with tissue-like relaxation times at 3T. METHODS: Phantoms mimicking the relaxation times of various tissues (gray and white matter, kidney cortex and medulla, spleen, muscle, liver) were built and tested with a clinical 3T whole-body MR scanner. Simple equations were derived to calculate the appropriate concentrations of soy lecithin and agar in aqueous solutions to achieve the desired relaxation times. Phantoms were tested for correspondence between measurements and calculated T1 and T2 values, reproducibility, spatial homogeneity, and temporal stability. T1 and T2 mapping techniques and a 3D T1-weighted sequence with high spatial resolution were applied. RESULTS: Except for the liver relaxation phantom, all phantoms were successfully and reproducibly produced. Good agreement was found between the targeted and measured relaxation times. The percentage deviations from the targeted relaxation times were less than 3% for T1 and less than 6.5% for T2. In addition, the phantoms were homogeneous and had little to no air bubbles. However, the phantoms were unstable over time: after a storage period of 4 weeks, mold growth and also changes in relaxation times were detected in almost all phantoms. CONCLUSION: Soy-lecithin-agar gels are a non-toxic material for the construction of relaxometry phantoms with tissue-like relaxation times. They are easy to prepare, inexpensive and allow independent adjustment of T1 and T2. However, there is still work to be done to improve the long-term stability of the phantoms.
Assuntos
Ágar , Lecitinas , Fígado , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Humanos , Ágar/química , Reprodutibilidade dos Testes , Fígado/diagnóstico por imagem , Lecitinas/química , Géis/química , Rim/diagnóstico por imagem , Glycine max , Baço/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imagem Corporal Total/métodos , Processamento de Imagem Assistida por Computador/métodosRESUMO
Lifestyle interventions can prevent type 2 diabetes (T2DM). However, some individuals do not experience anticipated improvements despite weight loss. Biomarkers to identify such individuals at early stages are lacking. Insulin-like growth factor 1 (IGF- 1) and Insulin-like growth factor binding protein 1(IGFBP-1) were shown to predict T2DM onset in prediabetes. We assessed whether these markers also predict the success of lifestyle interventions, thereby possibly guiding personalized strategies. We analyzed the fasting serum levels of IGF-1, IGFBP-1, and Insulin-like growth factor binding protein 2 (IGFBP-2) in relation to changes in metabolic and anthropometric parameters, including intrahepatic lipids (IHLs) and visceral adipose tissue (VAT) volume, measured by magnetic resonance imaging (MRI), in 345 participants with a high risk for prediabetes (54% female; aged 36-80 years). Participants were enrolled in three randomized dietary intervention trials and assessed both at baseline and one year post-intervention. Statistical analyses were performed using IBM SPSS Statistics (version 28), and significance was set at p < 0.05. Within the 1-year intervention, overall significant improvements were observed. Stratifying individuals by baseline IGF-1 and IGFBP-1 percentiles revealed significant differences: higher IGF-1 levels were associated with more favorable changes compared to lower levels, especially in VAT and IHL. Lower baseline IGFBP-1 levels were associated with greater improvements, especially in IHL and 2 h glucose. Higher bioactive IGF-1 levels might predict better metabolic outcomes following lifestyle interventions in prediabetes, potentially serving as biomarkers for personalized interventions.
Assuntos
Biomarcadores , Diabetes Mellitus Tipo 2 , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Fator de Crescimento Insulin-Like I , Estilo de Vida , Humanos , Feminino , Masculino , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Pessoa de Meia-Idade , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/análise , Idoso , Adulto , Diabetes Mellitus Tipo 2/sangue , Biomarcadores/sangue , Idoso de 80 Anos ou mais , Estado Pré-Diabético/sangue , Estado Pré-Diabético/terapia , Gordura Intra-Abdominal/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/sangueRESUMO
BACKGROUND: Exercise exerts many health benefits by directly inducing molecular alterations in physically utilized skeletal muscle. Molecular adaptations of subcutaneous adipose tissue (SCAT) might also contribute to the prevention of metabolic diseases. AIM: To characterize the response of human SCAT based on changes in transcripts and mitochondrial respiration to acute and repeated bouts of exercise in comparison to skeletal muscle. METHODS: Sedentary participants (27 ± 4 yrs) with overweight or obesity underwent 8-week supervised endurance exercise 3×1h/week at 80% VO2peak. Before, 60 min after the first and last exercise bout and 5 days post intervention, biopsies were taken for transcriptomic analyses and high-resolution respirometry (n = 14, 8 female/6 male). RESULTS: In SCAT, we found 37 acutely regulated transcripts (FC > 1.2, FDR < 10%) after the first exercise bout compared to 394, respectively, in skeletal muscle. Regulation of only 5 transcripts overlapped between tissues highlighting their differential response. Upstream and enrichment analyses revealed reduced transcripts of lipid uptake, storage and lipogenesis directly after exercise in SCAT and point to ß-adrenergic regulation as potential major driver. The data also suggest an exercise-induced modulation of the circadian clock in SCAT. Neither term was associated with transcriptomic changes in skeletal muscle. No evidence for beigeing/browning was found in SCAT along with unchanged respiration. CONCLUSIONS: Adipose tissue responds completely distinct from adaptations of skeletal muscle to exercise. The acute and repeated reduction in transcripts of lipid storage and lipogenesis, interconnected with a modulated circadian rhythm, can counteract metabolic syndrome progression toward diabetes.
Assuntos
Tecido Adiposo , Exercício Físico , Músculo Esquelético , Feminino , Humanos , Masculino , Tecido Adiposo/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Transcriptoma , Adulto Jovem , Adulto , Terapia por Exercício , Sobrepeso/terapia , Obesidade/terapia , Resultado do TratamentoRESUMO
PURPOSE: To test soy lecithin as a substance added to water for the construction of MRI phantoms with tissue-like diffusion coefficients. The performance of soy lecithin was assessed for the useable range of adjustable ADC values, the degree of non-Gaussian diffusion, simultaneous effects on relaxation times, and spectral signal properties. METHODS: Aqueous soy lecithin solutions of different concentrations (0%, 0.5%, 1%, 2%, 3% , 10%) and soy lecithin-agar gels were prepared and examined on a 3 Tesla clinical scanner at 18.5° ± 0.5°C. Echoplanar sequences (b values: 0-1000/3000 s/mm2 ) were applied for ADC measurements. Quantitative relaxometry and MRS were performed for assessment of T1 , T2 , and detectable spectral components. RESULTS: The presence of soy lecithin significantly restricts the diffusion of water molecules and mimics the nearly Gaussian nature of diffusion observed in tissue (for b values <1000 s/mm2 ). ADC values ranged from 2.02 × 10-3 mm2 /s to 0.48 × 10-3 mm2 /s and cover the entire physiological range reported on biological tissue. Measured T1 /T2 values of pure lecithin solutions varied from 2685/2013 to 668/133 ms with increasing concentration. No characteristic signals of soy lecithin were observed in the MR spectrum. The addition of agar to the soy lecithin solutions allowed T2 values to be well adjusted to typical values found in parenchymal tissue without affecting the soy lecithin-controlled ADC value. CONCLUSION: Soy lecithin is a promising substance for the construction of diffusion phantoms with tissue-like ADC values. It provides several advantages over previously proposed substances, in particular a wide range of adjustable ADC values, the lack of additional 1 H-signals, and the possibility to adjust ADC and T2 values (by adding agar) almost independently of each other.
Assuntos
Lecitinas , Imageamento por Ressonância Magnética , Ágar , Imagem de Difusão por Ressonância Magnética , Imagens de FantasmasRESUMO
BACKGROUND: Quantification of pancreatic fat (PF) and intrahepatic lipids (IHL) is of increasing interest in subjects at risk for metabolic diseases. There is limited data available on short- and medium-term variability of PF/IHL and on their dependence on nutritional status. PURPOSE: To assess short-term intraday variations of PF/IHL after a high-fat meal as well as medium-term changes after 5 days of high-caloric diet. STUDY TYPE: Prospective cohort study. SUBJECTS: A total of 12 subjects (six males) for intraday variations study, 15 male subjects for medium-term high-caloric diet study and 11 age- and body mass index (BMI)-matched controls. FIELD STRENGTH/SEQUENCE: A 3 T; chemical-shift encoded multiecho gradient echo sequence. ASSESSMENT: For the intraday study, subjects were scanned after overnight fasting and after a high fat meal on the same day. For the medium-term study, 26 subjects were scanned after overnight fasting with 15/11 rescanned after 5 days of high-calorie diet/isocaloric diet. Proton density fat fraction (PDFF) maps were generated inline on the scanner. Regions of interest were manually drawn in head, body, and tail of pancreas and in the liver by a medical physicist and a doctoral student (26/4 years of experience). PF was calculated as the average of the head, body, and tail measurements. STATISTICAL TESTS: Repeated measurements ANOVA for assessing changes in PF/IHL, linear correlation analyses for assessing relationships of PF/IHL with BMI. Significance level P < 0.05 for all. RESULTS: Nonsignificant changes in PF (2.6 ± 1.0 vs. 2.7 ± 0.9% after high-fat meal, 1.4 ± 0.8 vs. 1.5 ± 0.6% [high-caloric diet] and 1.5 ± 0.8 vs. 1.8 ± 1.0% [isocaloric control group]), nonsignificant changes in IHL after high-fat meal (2.6 ± 1.3 vs. 2.5 ± 0.9%) and in the control group (1.1 ± 0.6 vs. 1.2 ± 1.1%), significantly increased IHL after high-caloric diet (1.7 ± 2.2% vs. 2.7 ± 3.6%). Nonsignificant changes in PF (2.6 ± 1.0 vs. 2.7 ± 0.9% after high-fat meal, 1.4 ± 0.8 vs. 1.5 ± 0.6% [high-caloric diet] and 1.5 ± 0.8 vs. 1.8 ± 1.0% [isocaloric control group]), nonsignificant changes in IHL after high-fat meal (2.6 ± 1.3 vs. 2.5 ± 0.9%) and in the control group (1.1 ± 0.6 vs. 1.2 ± 1.1%), significantly increased IHL after 5-days of high-caloric diet (1.7 ± 2.2% vs. 2.7 ± 3.6%). DATA CONCLUSION: Time of day and nutritional status have no significant influence on PF/IHL and are therefore not likely to be major confounders in epidemiologic or clinical studies. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.
Assuntos
Fígado , Prótons , Tecido Adiposo/diagnóstico por imagem , Feminino , Humanos , Fígado/diagnóstico por imagem , Fígado/metabolismo , Imageamento por Ressonância Magnética , Masculino , Pâncreas/diagnóstico por imagem , Gravidez , Estudos ProspectivosRESUMO
OBJECTIVE: To provide a basis for the selection of suitable emulsifiers in oil-in-water emulsions used as tissue analogs for MRI experiments. Three different emulsifiers were investigated with regard to their ability to stabilize tissue-like oil-in-water emulsions. Furthermore, MR signal properties of the emulsifiers themselves and influences on relaxation times and ADC values of the aqueous phase were investigated. MATERIALS AND METHODS: Polysorbate 60, sodium dodecyl sulfate (SDS) and soy lecithin were used as emulsifiers. MR characteristics of emulsifiers were assessed in aqueous solutions and their function as a stabilizer was examined in oil-in-water emulsions of varying fat content (10, 20, 30, 40, 50%). Stability and homogeneity of the oil-in-water emulsions were evaluated with a delay of 3 h and 9 h after preparation using T1 mapping and visual control. Signal properties of the emulsifiers were investigated by 1H-MRS in aqueous emulsifier solutions. Relaxometry and diffusion weighted MRI (DWI) were performed to investigate the effect of various emulsifier concentrations on relaxation times (T1 and T2) and ADC values of aqueous solutions. RESULTS: Emulsions stabilized by polysorbate 60 or soy lecithin were stable and homogeneous across all tested fat fractions. In contrast, emulsions with SDS showed a significantly lower stability and homogeneity. Recorded T1 maps revealed marked creaming of oil droplets in almost all of the emulsions with SDS. The spectral analysis showed several additional signals for polysorbate and SDS. However, lecithin remained invisible in 1H-MRS. Relaxometry and DWI revealed different influences of the emulsifiers on water: Polysorbate and SDS showed only minor effects on relaxation times and ADC values of aqueous solutions, whereas lecithin showed a strong decrease in both relaxation times (r1,lecithin = 0.11 wt.%-1 s-1, r2,lecithin = 0.57 wt.%-1 s-1) and ADC value (Δ(ADC)lecithin = - 0.18 × 10-3 mm2/sâ wt.%) with increasing concentration. CONCLUSION: Lecithin is suggested as the preferred emulsifier of oil-in-water emulsions in MRI as it shows a high stabilizing ability and remains invisible in MRI experiments. In addition, lecithin is suitable as an alternative means of adjusting relaxation times and ADC values of water.
Assuntos
Lecitinas , Polissorbatos , Emulsificantes , Emulsões , Imageamento por Ressonância Magnética , Tamanho da Partícula , ÁguaRESUMO
Obesity, especially visceral fat accumulation, increases the risk of type 2 diabetes (T2D). The purpose of this study was to investigate the impact of T2D on the pancreatic fat depot. Pancreatic fat pads from 17 partial pancreatectomized patients (PPP) were collected, pancreatic preadipocytes isolated, and in vitro differentiated. Patients were grouped using HbA1c into normal glucose tolerant (NGT), prediabetic (PD), and T2D. Transcriptome profiles of preadipocytes and adipocytes were assessed by RNAseq. Insulin sensitivity was estimated by quantifying AKT phosphorylation on Western blots. Lipogenic capacity was assessed with oil red O staining, lipolytic activity via fatty acid release. Secreted factors were measured using ELISA. Comparative transcriptome analysis of preadipocytes and adipocytes indicates defective upregulation of genes governing adipogenesis (NR1H3), lipogenesis (FASN, SCD, ELOVL6, and FADS1), and lipolysis (LIPE) during differentiation of cells from T2D-PPP. In addition, the ratio of leptin/adiponectin mRNA was higher in T2D than in NGT-PPP. Preadipocytes and adipocytes of NGT-PPP were more insulin sensitive than T2D-PPP cells in regard to AKT phosphorylation. Triglyceride accumulation was similar in NGT and T2D adipocytes. Despite a high expression of the receptors NPR1 and NPR2 in NGT and T2D adipocytes, lipolysis was stimulated by ANP 1.74-fold in NGT cells only. This stimulation was further increased by the PDE5 inhibitor dipyridamole (3.09-fold). Dipyridamole and forskolin increased lipolysis receptor independently 1.88-fold and 1.48-fold, respectively, solely in NGT cells. In conclusion, the metabolic status persistently affects differentiation and lipolysis of pancreatic adipocytes. These alterations could aggravate the development of T2D.
Assuntos
Adipócitos/fisiologia , Adipogenia/fisiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Lipogênese/fisiologia , Lipólise/fisiologia , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular/fisiologia , Dessaturase de Ácido Graxo Delta-5 , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/fisiopatologia , Pâncreas/metabolismo , Pâncreas/fisiopatologia , Fosforilação/fisiologia , Triglicerídeos/metabolismoRESUMO
BACKGROUND: As cancer cachexia (CC) is associated with cancer progression, early identification would be beneficial. The aim of this study was to establish a workflow for automated MRI-based segmentation of visceral (VAT) and subcutaneous adipose tissue (SCAT) and lean tissue water (LTW) in a B16 melanoma animal model, monitor diseases progression and transfer the protocol to human melanoma patients for therapy assessment. METHODS: For in vivo monitoring of CC B16 melanoma-bearing and healthy mice underwent longitudinal three-point DIXON MRI (days 3, 12, 17 after subcutaneous tumor inoculation). In a prospective clinical study, 18 metastatic melanoma patients underwent MRI before, 2 and 12 weeks after onset of checkpoint inhibitor therapy (CIT; n = 16). We employed an in-house MATLAB script for automated whole-body segmentation for detection of VAT, SCAT and LTW. RESULTS: B16 mice exhibited a CC phenotype and developed a reduced VAT volume compared to baseline (B16 - 249.8 µl, - 25%; controls + 85.3 µl, + 10%, p = 0.003) and to healthy controls. LTW was increased in controls compared to melanoma mice. Five melanoma patients responded to CIT, 7 progressed, and 6 displayed a mixed response. Responding patients exhibited a very limited variability in VAT and SCAT in contrast to others. Interestingly, the LTW was decreased in CIT responding patients (- 3.02% ± 2.67%; p = 0.0034) but increased in patients with progressive disease (+ 1.97% ± 2.19%) and mixed response (+ 4.59% ± 3.71%). CONCLUSION: MRI-based segmentation of fat and water contents adds essential additional information for monitoring the development of CC in mice and metastatic melanoma patients during CIT or other treatment approaches.
Assuntos
Tecido Adiposo/diagnóstico por imagem , Caquexia/diagnóstico , Imageamento por Ressonância Magnética/métodos , Melanoma/diagnóstico , Neoplasias Cutâneas/diagnóstico , Tecido Adiposo/química , Idoso , Animais , Modelos Animais de Doenças , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Melanoma/tratamento farmacológico , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monitorização Fisiológica , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias Cutâneas/tratamento farmacológico , Água/análiseRESUMO
1 H-MR spectroscopy of skeletal muscle provides insight into metabolism that is not available noninvasively by other methods. The recommendations given in this article are intended to guide those who have basic experience in general MRS to the special application of 1 H-MRS in skeletal muscle. The highly organized structure of skeletal muscle leads to effects that change spectral features far beyond simple peak heights, depending on the type and orientation of the muscle. Specific recommendations are given for the acquisition of three particular metabolites (intramyocellular lipids, carnosine and acetylcarnitine) and for preconditioning of experiments and instructions to study volunteers.
Assuntos
Consenso , Músculo Esquelético/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética , Prova Pericial , Humanos , Redes e Vias Metabólicas , Metaboloma , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/metabolismoRESUMO
AIM: To evaluate the distribution of intramyocellular lipids (IMCLs) and extramyocellular lipids (EMCLs) as well as total fat content in abdominal skeletal muscle by magnetic resonance imaging (MRI) using a dedicated segmentation algorithm in subjects with type 2 diabetes (T2D), prediabetes and normoglycaemic controls. MATERIALS AND METHODS: Subjects from a population-based cohort were classified with T2D, prediabetes or as normoglycaemic controls. Total myosteatosis, IMCLs and EMCLs were quantified by multiecho Dixon MRI as proton-density fat-fraction (in %) in abdominal skeletal muscle. RESULTS: Among 337 included subjects (median age 56.0 [IQR: 49.0-64.0] years, 56.4% males, median body mass index [BMI]: 27.2 kg/m2 ), 129 (38.3%) were classified with an impaired glucose metabolism (T2D: 49 [14.5%]; prediabetes: 80 [23.7%]). IMCLs were significantly higher than EMCLs in subjects without obesity (5.7% [IQR: 4.8%-7.0%] vs. 4.1% [IQR: 2.7%-5.8%], P < .001), whereas the amounts of IMCLs and EMCLs were shown to be equal and significantly higher in subjects with obesity (both 6.7%, P < .001). Subjects with prediabetes and T2D had significantly higher amounts of IMCLs and EMCLs compared with normoglycaemic controls (P < .001). In univariable analysis, prediabetes and T2D were significantly associated with both IMCLs (prediabetes: ß: 0.76, 95% CI: 0.28-1.24, P = .002; T2D: ß: 1.56, 95% CI: 0.66-2.47, P < .001) and EMCLs (prediabetes: ß: 1.54, 95% CI: 0.56-2.51, P = .002; T2D: ß: 2.15, 95% CI: 1.33-2.96, P < .001). After adjustment for age and gender, the association of IMCLs with prediabetes attenuated (P = 0.06), whereas for T2D, both IMCLs and EMCLs remained significantly and positively associated (P < .02). CONCLUSION: There are significant differences in the amount and distribution ratio of IMCLs and EMCLs between subjects with T2D, prediabetes and normoglycaemic controls. Therefore, these patterns of intramuscular fat distribution by MRI might serve as imaging biomarkers in both normal and impaired glucose metabolism.
Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Feminino , Humanos , Lipídeos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Estado Pré-Diabético/diagnóstico por imagemRESUMO
Increased animal but not plant protein intake has been associated with increased mortality in epidemiological studies in humans and with reduced lifespan in animal species. Protein intake increases the activity of the IGF-1 system which may provide a link to reduced lifespan. We, therefore, compared the effects of animal versus plant protein intake on circulating levels of IGF-1 and the IGF-binding proteins (IGFBP)-1 and IGFBP-2 over a 6-week period. Thirty seven participants with type 2 diabetes consumed isocaloric diets composed of either 30% energy (EN) animal or plant protein, 30% EN fat and 40% EN carbohydrates for 6 weeks. The participants were clinically phenotyped before and at the end of the study. Both diets induced similar and significant increases of IGF-1 which was unaffected by the different amino acid compositions of plant and animal protein. Despite improvements of insulin sensitivity and major reductions of liver fat, IGFBP2 decreased with both diets while IGFBP-1 was not altered. We conclude that animal and plant protein similarly increase IGF-1 bioavailability while improving metabolic parameters and may be regarded as equivalent in this regard.
Assuntos
Diabetes Mellitus Tipo 2 , Fator de Crescimento Insulin-Like I , Animais , Dieta , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas de PlantasRESUMO
More than 100 attendees from Australia, Austria, Belgium, Canada, China, Germany, Hong Kong, Indonesia, Japan, Malaysia, the Netherlands, the Philippines, Republic of Korea, Singapore, Sweden, Switzerland, the United Kingdom, and the United States convened in Singapore for the 2019 ISMRM-sponsored workshop on MRI of Obesity and Metabolic Disorders. The scientific program brought together a multidisciplinary group of researchers, trainees, and clinicians and included sessions in diabetes and insulin resistance; an update on recent advances in water-fat MRI acquisition and reconstruction methods; with applications in skeletal muscle, bone marrow, and adipose tissue quantification; a summary of recent findings in brown adipose tissue; new developments in imaging fat in the fetus, placenta, and neonates; the utility of liver elastography in obesity studies; and the emerging role of radiomics in population-based "big data" studies. The workshop featured keynote presentations on nutrition, epidemiology, genetics, and exercise physiology. Forty-four proffered scientific abstracts were also presented, covering the topics of brown adipose tissue, quantitative liver analysis from multiparametric data, disease prevalence and population health, technical and methodological developments in data acquisition and reconstruction, newfound applications of machine learning and neural networks, standardization of proton density fat fraction measurements, and X-nuclei applications. The purpose of this article is to summarize the scientific highlights from the workshop and identify future directions of work.
Assuntos
Doenças Metabólicas , Obesidade , Tecido Adiposo , Canadá , Alemanha , Humanos , Recém-Nascido , Japão , Imageamento por Ressonância Magnética , Países Baixos , Obesidade/diagnóstico por imagem , SuíçaRESUMO
BACKGROUND AND AIMS: Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent and nutrition intervention remains the most important therapeutic approach for NAFLD. Our aim was to investigate whether low- (LP) or high-protein (HP) diets are more effective in reducing liver fat and reversing NAFLD and which mechanisms are involved. METHODS: 19 participants with morbid obesity undergoing bariatric surgery were randomized into two hypocaloric (1500-1600 kcal/day) diet groups, a low protein (10E% protein) and a high protein (30E% protein), for three weeks prior to surgery. Intrahepatic lipid levels (IHL) and serum fibroblast growth factor 21 (FGF21) were measured before and after the dietary intervention. Autophagy flux, histology, mitochondrial activity and gene expression analyses were performed in liver samples collected during surgery. RESULTS: IHL levels decreased by 42.6% in the HP group, but were not significantly changed in the LP group despite similar weight loss. Hepatic autophagy flux and serum FGF21 increased by 66.7% and 42.2%, respectively, after 3 weeks in the LP group only. Expression levels of fat uptake and lipid biosynthesis genes were lower in the HP group compared with those in the LP group. RNA-seq analysis revealed lower activity of inflammatory pathways upon HP diet. Hepatic mitochondrial activity and expression of ß-oxidation genes did not increase in the HP group. CONCLUSIONS: HP diet more effectively reduces hepatic fat than LP diet despite of lower autophagy and FGF21. Our data suggest that liver fat reduction upon HP diets result primarily from suppression of fat uptake and lipid biosynthesis.
Assuntos
Dieta Rica em Proteínas , Dieta com Restrição de Proteínas , Autofagia , Dieta , Dieta Hiperlipídica , Proteínas Alimentares , Fatores de Crescimento de Fibroblastos , Humanos , FígadoRESUMO
OBJECTIVES: To establish the effect of different degrees and kinds of physical activity on bone marrow fat (BMAT) content at different anatomical locations in a population-based cohort study undergoing whole-body MR imaging. METHODS: Subjects of the KORA FF4 study without known cardiovascular disease underwent BMAT fat fraction (FF) quantification in L1 and L2 vertebrae and femoral heads/necks (hip) via a 2-point T1-weighted VIBE Dixon sequence. BMAT-FF was calculated as mean value (fat image) divided by mean value (fat + water image). Physical activity was determined by self-assessment questionnaire regarding time spent exercising, non-exercise walking, non-exercise cycling, and job-related physical activity. RESULTS: A total of 385 subjects (96% of 400 available; 56 ± 9.1 years; 58% male) were included in the analysis. Exercise was distributed quite evenly (29% > 2 h/week; 31% ~ 1 h/week (regularly); 15% ~ 1 h/week (irregularly); 26% no physical activity). BMAT-FF was 52.6 ± 10.2% in L1, 56.2 ± 10.3% in L2, 87.4 ± 5.9% in the right hip, and 87.2 ± 5.9% in the left hip (all p < 0.001). Correlation of BMAT-FF between spine and hip was only moderate (r 0.42 to 0.46). Spinal BMAT-FF, but not hip BMAT-FF, was inversely associated with exercise > 2 h/week (p ≤ 0.02 vs. p ≥ 0.35, respectively). These associations remained significant after adjusting for age, gender, waist circumference, and glucose tolerance. No coherent association was found between BMAT-FF and physical activity in the less active groups. CONCLUSIONS: In our study, exercise was inversely correlated with vertebral BMAT-FF, but not hip BMAT-FF, when exercising for more than 2 h per week. Physical activity seems to affect the spine at least preferentially compared to the hip. KEY POINTS: ⢠In our population-based cohort, at least 2 h of physical activity per week were required to show lower levels of bone marrow adipose tissue fat fraction in MRI. ⢠Physical activity seems to affect bone marrow adipose tissue at least preferentially at the spine in contrast to the proximal femur.
Assuntos
Tecido Adiposo/diagnóstico por imagem , Medula Óssea/diagnóstico por imagem , Exercício Físico , Cabeça do Fêmur/diagnóstico por imagem , Colo do Fêmur/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Idoso , Estudos de Coortes , Feminino , Quadril , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Imagem Corporal TotalRESUMO
OBJECTIVES: Diverticular disease represents an increasing pathology and healthcare burden worldwide. Our aim was to study the prevalence, extent and distribution of asymptomatic diverticular disease assessed by magnetic resonance imaging (MRI) in a sample of a Western population. METHODS: Subjects from a population-based cohort study who underwent 3-T MRI were analyzed for the prevalence and extent of diverticula of the colon using an isotropic VIBE-Dixon gradient-echo sequence. The extent of diverticular disease was categorized according to the number of diverticula in each colonic segment. Univariate and adjusted analyses were performed to assess associated characteristics and risk factors. RESULTS: Among 393 subjects included in the analysis (56.4 ± 9.2 years, 57.5% males), 164 (42%) had diverticular disease, with the highest prevalence in the left-sided colonic segments (93% diverticular disease in the descending and sigmoid segment). Subjects with advanced diverticular disease were older (62.1 vs. 54.4 years) and had a higher body mass index (BMI), LDL cholesterol levels and systolic blood pressure (30.2 ± 5.1 vs. 27.8 ± 4.9 kg/m2, 149.8 ± 29.3 vs. 135.2 ± 32.9 mg/dl and 128.2 ± 14.1 vs. 118.4 ± 16.1 mmHg, respectively; all p > 0.003) compared with subjects without diverticular disease. In contrast, no significant correlation could be found for gender, physical activity, smoking status and alcohol consumption (all p > 0.31). Intra-rater reliability was excellent for all colonic segments (intra-class correlation [ICC] = 0.99-1.00), and inter-rater reliability was excellent for left- and right-sided colonic segments (ICC = 0.84-0.97). CONCLUSIONS: These findings provide insights into the disease mechanism of asymptomatic diverticular disease and may help to improve prevention of diverticulosis and its associated complications. KEY POINTS: ⢠Overall prevalence of asymptomatic diverticular disease assessed by MRI was 42%, affecting predominantly the left-sided colon. ⢠Asymptomatic diverticular disease was associated with age and cardiometabolic risk factors. ⢠Magnetic resonance imaging reveals insights into the pathophysiologic mechanism of asymptomatic diverticular disease.
Assuntos
Colo/patologia , Doenças Diverticulares/diagnóstico , Imageamento por Ressonância Magnética/métodos , Idoso , Índice de Massa Corporal , Estudos de Coortes , Doenças Diverticulares/epidemiologia , Feminino , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , Reprodutibilidade dos Testes , Fatores de RiscoRESUMO
The liver is a central regulator of whole body glucose, and lipid homeostasis and hepatokines, like fetuin-A, have been identified as markers and mediators of fatty liver-induced cardiometabolic risk. The closely related protein fetuin-B was shown to be upregulated in the fatty liver and to impact on glucose homeostasis in mice. In the present study we aimed to test the relevance of these findings in humans. In 55 subjects, hepatic mRNA expression of both hepatokines, fetuin-A and fetuin-B, associated positively with liver triglyceride content, whereas only fetuin-A expression associated with the homeostatic model assessment of insulin resistance. In 220 subjects who underwent precise metabolic phenotyping, circulating fetuin-A, but not fetuin-B, associated positively with liver fat content, and negatively with insulin sensitivity, measured during the oral glucose tolerance test (OGTT) and during the euglycemic, hyperinsulinemic clamp. Both circulating fetuin-A and fetuin-B correlated positively with the glucose area under the curve during the OGTT, but after additional adjustment for insulin sensitivity this relationship remained significant only for fetuin-B. In conclusion, despite the fact that the two hepatokines, fetuin-A and fetuin-B, are upregulated in the state of hepatic steatosis in humans, it appears that they differently impact on glucose homeostasis. Our data are in agreement with observations that fetuin-A can alter insulin signaling and that fetuin-B may regulate glucose homeostasis via so far unknown effects, possibly on glucose effectiveness.
Assuntos
Fígado Gorduroso/sangue , Fígado Gorduroso/genética , Fetuína-B , alfa-2-Glicoproteína-HS , Idoso , Estudos de Coortes , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Fetuína-B/análise , Fetuína-B/genética , Fetuína-B/metabolismo , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina/fisiologia , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Regulação para Cima/genética , alfa-2-Glicoproteína-HS/análise , alfa-2-Glicoproteína-HS/genética , alfa-2-Glicoproteína-HS/metabolismoRESUMO
BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is associated with increased risk of hepatic, cardiovascular, and metabolic diseases. High-protein diets, rich in methionine and branched chain amino acids (BCAAs), apparently reduce liver fat, but can induce insulin resistance. We investigated the effects of diets high in animal protein (AP) vs plant protein (PP), which differ in levels of methionine and BCAAs, in patients with type 2 diabetes and NAFLD. We examined levels of liver fat, lipogenic indices, markers of inflammation, serum levels of fibroblast growth factor 21 (FGF21), and activation of signaling pathways in adipose tissue. METHODS: We performed a prospective study of individuals with type 2 diabetes and NAFLD at a tertiary medical center in Germany from June 2013 through March 2015. We analyzed data from 37 subjects placed on a diet high in AP (rich in meat and dairy foods; n = 18) or PP (mainly legume protein; n = 19) without calorie restriction for 6 weeks. The diets were isocaloric with the same macronutrient composition (30% protein, 40% carbohydrates, and 30% fat). Participants were examined at the start of the study and after the 6-week diet period for body mass index, body composition, hip circumference, resting energy expenditure, and respiratory quotient. Body fat and intrahepatic fat were detected by magnetic resonance imaging and spectroscopy, respectively. Levels of glucose, insulin, liver enzymes, and inflammation markers, as well as individual free fatty acids and free amino acids, were measured in collected blood samples. Hyperinsulinemic euglycemic clamps were performed to determine whole-body insulin sensitivity. Subcutaneous adipose tissue samples were collected and analyzed for gene expression patterns and phosphorylation of signaling proteins. RESULTS: Postprandial levels of BCAAs and methionine were significantly higher in subjects on the AP vs the PP diet. The AP and PP diets each reduced liver fat by 36%-48% within 6 weeks (for AP diet P = .0002; for PP diet P = .001). These reductions were unrelated to change in body weight, but correlated with down-regulation of lipolysis and lipogenic indices. Serum level of FGF21 decreased by 50% in each group (for AP diet P < .0002; for PP diet P < .0002); decrease in FGF21 correlated with loss of hepatic fat. In gene expression analyses of adipose tissue, expression of the FGF21 receptor cofactor ß-klotho was associated with reduced expression of genes encoding lipolytic and lipogenic proteins. In patients on each diet, levels of hepatic enzymes and markers of inflammation decreased, insulin sensitivity increased, and serum level of keratin 18 decreased. CONCLUSIONS: In a prospective study of patients with type 2 diabetes, we found diets high in protein (either animal or plant) significantly reduced liver fat independently of body weight, and reduced markers of insulin resistance and hepatic necroinflammation. The diets appear to mediate these changes via lipolytic and lipogenic pathways in adipose tissue. Negative effects of BCAA or methionine were not detectable. FGF21 level appears to be a marker of metabolic improvement. ClinicalTrials.gov ID NCT02402985.