Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(11): 5892-5905, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30957850

RESUMO

The phenotypic adjustments of Mycobacterium tuberculosis are commonly inferred from the analysis of transcript abundance. While mechanisms of transcriptional regulation have been extensively analysed in mycobacteria, little is known about mechanisms that shape the transcriptome by regulating RNA decay rates. The aim of the present study is to identify the core components of the RNA degradosome of M. tuberculosis and to analyse their function in RNA metabolism. Using an approach involving cross-linking to 4-thiouridine-labelled RNA, we mapped the mycobacterial RNA-bound proteome and identified degradosome-related enzymes polynucleotide phosphorylase (PNPase), ATP-dependent RNA helicase (RhlE), ribonuclease E (RNase E) and ribonuclease J (RNase J) as major components. We then carried out affinity purification of eGFP-tagged recombinant constructs to identify protein-protein interactions. This identified further interactions with cold-shock proteins and novel KH-domain proteins. Engineering and transcriptional profiling of strains with a reduced level of expression of core degradosome ribonucleases provided evidence of important pleiotropic roles of the enzymes in mycobacterial RNA metabolism highlighting their potential vulnerability as drug targets.


Assuntos
Mycobacterium tuberculosis/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA/análise , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Complexos Multienzimáticos , Mycobacterium smegmatis/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/genética , Proteoma , Proteômica , RNA/química , RNA Helicases/metabolismo , Estabilidade de RNA , RNA Bacteriano/metabolismo , Ribonuclease III/metabolismo , Ribonucleases/metabolismo , Tiouridina/química , Transcriptoma
2.
Fungal Genet Biol ; 49(3): 189-98, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22300944

RESUMO

The filamentous fungus Aspergillus nidulans can utilize arginine both as a nitrogen and carbon source. Analysis of areA and areB single and double mutants has shown that the two GATA transcription factors AREA and AREB negatively regulate the expression of arginine catabolism genes agaA and otaA under nitrogen repressing conditions. AREA is necessary for the ammonium repression of agaA and otaA under carbon repressing conditions, while AREB is involved under carbon-limiting conditions. The ability of both AREA and AREB to sense the status of carbon metabolism is most probably dependent on NMRA, and not on the transcription factor CREA, which mediates general carbon catabolite repression in A. nidulans. NMRA is a co-repressor which has previously been shown to bind the C-terminus of AREA and inhibits its activity under conditions of nitrogen sufficiency, in response to high intracellular glutamine levels. We therefore propose a novel function for NMRA, the modulation of AREA and AREB activity in response to the carbon status of the cell.


Assuntos
Arginina/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Carbono/metabolismo , Regulação para Baixo , Proteínas Fúngicas/metabolismo , Fatores de Transcrição GATA/metabolismo , Nitrogênio/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Fatores de Transcrição GATA/genética , Regulação Fúngica da Expressão Gênica , Proteínas Repressoras/genética , Fatores de Transcrição/genética
3.
FEMS Microbiol Lett ; 366(6)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939206

RESUMO

In Aspergillus nidulans, nitrogen and carbon metabolism are under the control of wide-domain regulatory systems, including nitrogen metabolite repression, carbon catabolite repression and the nutrient starvation response. Transcriptomic analysis of the wild type strain grown under different combinations of carbon and nitrogen regimes was performed, to identify differentially regulated genes. Carbon metabolism predominates as the most important regulatory signal but for many genes, both carbon and nitrogen metabolisms coordinate regulation. To identify mechanisms coordinating nitrogen and carbon metabolism, we tested the role of AreB, previously identified as a regulator of genes involved in nitrogen metabolism. Deletion of areB has significant phenotypic effects on the utilization of specific carbon sources, confirming its role in the regulation of carbon metabolism. AreB was shown to regulate the expression of areA, tamA, creA, xprG and cpcA regulatory genes suggesting areB has a range of indirect, regulatory effects. Different isoforms of AreB are produced as a result of differential splicing and use of two promoters which are differentially regulated by carbon and nitrogen conditions. These isoforms are likely to be functionally distinct and thus contributing to the modulation of AreB activity.


Assuntos
Aspergillus nidulans/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Transcrição GATA/metabolismo , Regulação Fúngica da Expressão Gênica , Nitrogênio/metabolismo , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Fatores de Transcrição GATA/genética , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa