Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Heart J ; 41(26): 2487-2497, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-31289820

RESUMO

AIMS: Here, we aimed to determine the therapeutic effect of longevity-associated variant (LAV)-BPIFB4 gene therapy on atherosclerosis. METHODS AND RESULTS: ApoE knockout mice (ApoE-/-) fed a high-fat diet were randomly allocated to receive LAV-BPIFB4, wild-type (WT)-BPIFB4, or empty vector via adeno-associated viral vector injection. The primary endpoints of the study were to assess (i) vascular reactivity and (ii) atherosclerotic disease severity, by Echo-Doppler imaging, histology and ultrastructural analysis. Moreover, we assessed the capacity of the LAV-BPIFB4 protein to shift monocyte-derived macrophages of atherosclerotic mice and patients towards an anti-inflammatory phenotype. LAV-BPIFB4 gene therapy rescued endothelial function of mesenteric and femoral arteries from ApoE-/- mice; this effect was blunted by AMD3100, a CXC chemokine receptor type 4 (CXCR4) inhibitor. LAV-BPIFB4-treated mice showed a CXCR4-mediated shift in the balance between Ly6Chigh/Ly6Clow monocytes and M2/M1 macrophages, along with decreased T cell proliferation and elevated circulating levels of interleukins IL-23 and IL-27. In vitro conditioning with LAV-BPIFB4 protein of macrophages from atherosclerotic patients resulted in a CXCR4-dependent M2 polarization phenotype. Furthermore, LAV-BPIFB4 treatment of arteries explanted from atherosclerotic patients increased the release of atheroprotective IL-33, while inhibiting the release of pro-inflammatory IL-1ß, inducing endothelial nitric oxide synthase phosphorylation and restoring endothelial function. Finally, significantly lower plasma BPIFB4 was detected in patients with pathological carotid stenosis (>25%) and intima media thickness >2 mm. CONCLUSION: Transfer of the LAV of BPIFB4 reduces the atherogenic process and skews macrophages towards an M2-resolving phenotype through modulation of CXCR4, thus opening up novel therapeutic possibilities in cardiovascular disease.


Assuntos
Aterosclerose , Placa Aterosclerótica , Idoso , Animais , Apolipoproteínas E , Aterosclerose/genética , Espessura Intima-Media Carotídea , Feminino , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular , Longevidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Fosfoproteínas , Receptores CXCR4
2.
Hum Mol Genet ; 27(14): 2490-2501, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29688337

RESUMO

Huntington's disease (HD) is the most common neurodegenerative disorder for which no effective cure is yet available. Although several agents have been identified to provide benefits so far, the number of therapeutic options remains limited with only symptomatic treatment available. Over the past few years, we have demonstrated that sphingolipid-based approaches may open the door to new and more targeted treatments for the disease. In this study, we investigated the therapeutic potential of stimulating sphingosine-1-phosphate (S1P) receptor 5 by the new selective agonist A-971432 (provided by AbbVie) in R6/2 mice, a widely used HD animal model. Chronic administration of low-dose (0.1 mg/kg) A-971432 slowed down the progression of the disease and significantly prolonged lifespan in symptomatic R6/2 mice. Such beneficial effects were associated with activation of pro-survival pathways (BDNF, AKT and ERK) and with reduction of mutant huntingtin aggregation. A-971432 also protected blood-brain barrier (BBB) homeostasis in the same mice. Interestingly, when administered early in the disease, before any overt symptoms, A-971432 completely protected HD mice from the classic progressive motor deficit and preserved BBB integrity. Beside representing a promising strategy to take into consideration for the development of alternative therapeutic options for HD, selective stimulation of S1P receptor 5 may be also seen as an effective approach to target brain vasculature defects in the disease.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Proteína Huntingtina/genética , Doença de Huntington/tratamento farmacológico , Agregação Patológica de Proteínas/tratamento farmacológico , Receptores de Lisoesfingolipídeo/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Agregação Patológica de Proteínas/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de Lisoesfingolipídeo/agonistas
3.
Neurobiol Dis ; 121: 76-94, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30243733

RESUMO

Status epilepticus (SE) of limbic onset might cause degenerative phenomena in different brain structures, and may be associated with chronic cognitive and EEG effects. In the present study SE was evoked focally by microinfusing picomolar doses of cyclothiazide+bicuculline into the anterior extent of the piriform cortex (APC) in rats, the so-called area tempestas, an approach which allows to evaluate selectively the effects of seizure spreading through the natural anatomical circuitries up to secondary generalization. In the brain of rats submitted to SE we analyzed neuronal density, occurrence of degenerative phenomena (by Fluoro-Jade B-FJB- staining) and expression of heat shock protein-70 (HSP-70) in the piriform cortex, the hippocampus and ventromedial thalamus. We further analyzed in detail, the loss of cholinergic neurons, and the presence of FJB- and HSP-70 positive neurons in basal forebrain cholinergic areas, i.e. the medial septal nucleus (MSN, Ch1), the diagonal band of Broca (DBB, Ch2 and Ch3) and the Nucleus basalis of Meynert (NBM, Ch4). In fact, these nuclei are strictly connected with limbic structures, and play a key pivotal role in different cognitive functions and vigilance. Although recent studies begun to investigate these nuclei in experimental epilepsy and in persons with epilepsy, conflicting results were obtained so far. We showed that after severe and long-lasting, focally induced limbic SE there is a significant cell loss within all of the abovementioned cholinergic nuclei ipsi- and contra-laterally to the infusion site. In parallel, these nuclei show also FJB and heat shock protein-70 expression. Those effects vary depending on the single nucleus assessed and on the severity of the SE seizure score. We also showed the occurrence of cell loss and degenerative phenomena in limbic cortex, hippocampus and limbic thalamic areas. These novel findings show direct evidence of SE-induced neuronal damage which is solely due to seizure activity ruling out potential confounding effects produced by systemic pro-convulsant neurotoxins. A damage to basal forebrain cholinergic nuclei, which may underlie cognitive alterations, is documented for the first time in a model of SE triggered focally.


Assuntos
Prosencéfalo Basal/patologia , Encéfalo/patologia , Neurônios Colinérgicos/patologia , Estado Epiléptico/patologia , Animais , Benzotiadiazinas/administração & dosagem , Bicuculina/administração & dosagem , Encéfalo/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Masculino , Córtex Piriforme/metabolismo , Córtex Piriforme/patologia , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente
4.
Int J Mol Sci ; 20(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398927

RESUMO

Atrial natriuretic peptide (ANP) is a cardiac hormone belonging to the family of natriuretic peptides (NPs). ANP exerts diuretic, natriuretic, and vasodilatory effects that contribute to maintain water-salt balance and regulate blood pressure. Besides these systemic properties, ANP displays important pleiotropic effects in the heart and in the vascular system that are independent of blood pressure regulation. These functions occur through autocrine and paracrine mechanisms. Previous works examining the cardiac phenotype of loss-of-function mouse models of ANP signaling showed that both mice with gene deletion of ANP or its receptor natriuretic peptide receptor A (NPR-A) developed cardiac hypertrophy and dysfunction in response to pressure overload and chronic ischemic remodeling. Conversely, ANP administration has been shown to improve cardiac function in response to remodeling and reduces ischemia-reperfusion (I/R) injury. ANP also acts as a pro-angiogenetic, anti-inflammatory, and anti-atherosclerotic factor in the vascular system. Pleiotropic effects regarding brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) were also reported. In this review, we discuss the current evidence underlying the pleiotropic effects of NPs, underlying their importance in cardiovascular homeostasis.


Assuntos
Sistema Cardiovascular/metabolismo , Peptídeos Natriuréticos/metabolismo , Animais , Sistema Cardiovascular/efeitos dos fármacos , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Peptídeo Natriurético Encefálico/farmacologia , Peptídeos Natriuréticos/farmacologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Remodelação Vascular/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
5.
Int J Mol Sci ; 20(12)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31197099

RESUMO

Glucocorticoids are produced by the adrenal cortex and regulate cell metabolism in a variety of organs. This occurs either directly, by acting on specific receptors in a variety of cells, or by stimulating catecholamine expression within neighbor cells of the adrenal medulla. In this way, the whole adrenal gland may support specific metabolic requirements to cope with stressful conditions from external environment or internal organs. In addition, glucocorticoid levels may increase significantly in the presence of inappropriate secretion from adrenal cortex or may be administered at high doses to treat inflammatory disorders. In these conditions, metabolic alterations and increased blood pressure may occur, although altered sleep-waking cycle, anxiety, and mood disorders are frequent. These latter symptoms remain unexplained at the molecular level, although they overlap remarkably with disorders affecting catecholamine nuclei of the brainstem reticular formation. In fact, the present study indicates that various doses of glucocorticoids alter the expression of genes and proteins, which are specific for reticular catecholamine neurons. In detail, corticosterone administration to organotypic mouse brainstem cultures significantly increases Tyrosine hydroxylase (TH) and Dopamine transporter (DAT), while Phenylethanolamine N-methyltransferase (PNMT) is not affected. On the other hand, Dopamine Beta-Hydroxylase (DBH) increases only after very high doses of corticosterone.


Assuntos
Tronco Encefálico/metabolismo , Catecolaminas/metabolismo , Corticosterona/farmacologia , Animais , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina beta-Hidroxilase/genética , Dopamina beta-Hidroxilase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos/métodos , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Regulação para Cima
6.
Brain Behav Immun ; 73: 584-595, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981425

RESUMO

Recent studies described a critical role for microglia in amyotrophic lateral sclerosis (ALS), where these CNS-resident immune cells participate in the establishment of an inflammatory microenvironment that contributes to motor neuron degeneration. Understanding the mechanisms leading to microglia activation in ALS could help to identify specific molecular pathways which could be targeted to reduce or delay motor neuron degeneration and muscle paralysis in patients. The intermediate-conductance calcium-activated potassium channel KCa3.1 has been reported to modulate the "pro-inflammatory" phenotype of microglia in different pathological conditions. We here investigated the effects of blocking KCa3.1 activity in the hSOD1G93AALS mouse model, which recapitulates many features of the human disease. We report that treatment of hSOD1G93A mice with a selective KCa3.1 inhibitor, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), attenuates the "pro-inflammatory" phenotype of microglia in the spinal cord, reduces motor neuron death, delays onset of muscle weakness, and increases survival. Specifically, inhibition of KCa3.1 channels slowed muscle denervation, decreased the expression of the fetal acetylcholine receptor γ subunit and reduced neuromuscular junction damage. Taken together, these results demonstrate a key role for KCa3.1 in driving a pro-inflammatory microglia phenotype in ALS.


Assuntos
Microglia/fisiologia , Neurônios Motores/fisiologia , Canais de Potássio Cálcio-Ativados/fisiologia , Esclerose Lateral Amiotrófica/patologia , Animais , Morte Celular , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Fenótipo , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Canais de Potássio Cálcio-Ativados/metabolismo , Pirazóis/farmacologia , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/fisiologia
7.
Environ Toxicol ; 33(11): 1160-1167, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30218594

RESUMO

Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence other approaches have been investigated to target more pathways involved in glioblastoma development and progression. Here we investigate the anticancer effect of Aloe-Emodin (AE), an anthraquinone compound presents in the leaves of Aloe arborescens, on human glioblastoma cell line U87MG. U87MG were treated with various concentrations of AE (20 and 40 µM) for different times (24, 48, and 72 hr). Cell growth was monitored by daily cell count after treatments. Growth analysis showed that AE significantly decrease proliferation of U87MG in a time and dose dependent manner. FACS analysis demonstrates a block of cell cycle in S and G2/M phase. AE probably induced also apoptosis by releasing of apoptosis-inducing factor: PARP and Lamin activation leading to nuclear shrinkage. In addition, exposure of U87MG to AE reduced pAKT phosphorylation. AE inhibition of U87MG growth is a result of more mechanism together. Here we report that AE has a specific growth inhibition on U87MG also in in vivo. The growth of U87MG, subcutaneously injected in nude mice with severe combined immunodeficiency, is inhibited without any appreciable toxic effects on the animals after AE treatment. AE might represent a conceptually new lead antitumor adjuvant drug.


Assuntos
Antraquinonas/farmacologia , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Glioblastoma/patologia , Adulto , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Masculino , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Circ Res ; 117(4): 333-45, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26034043

RESUMO

RATIONALE: Long living individuals show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase activity, endothelial dysfunction, and impairment of tissue repair after ischemic injury. OBJECTIVE: Exploit genetic analysis of long living individuals to reveal master molecular regulators of physiological aging and new targets for treatment of cardiovascular disease. METHODS AND RESULTS: We show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in 3 independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation/activation by protein-kinase-R-like endoplasmic reticulum kinase induces its complexing with 14-3-3 and heat shock protein 90, which is facilitated by the longevity-associated variant. In isolated vessels, BPIFB4 is upregulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and old mice, gene transfer of longevity-associated variant-BPIFB4 restores endothelial nitric oxide synthase signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34(+) cells of long living individuals, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with longevity-associated variant-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. CONCLUSIONS: Longevity-associated variant-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular reparative processes.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Longevidade/genética , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas 14-3-3/metabolismo , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Pressão Sanguínea , Movimento Celular , Modelos Animais de Doenças , Europa (Continente) , Feminino , Estudos de Associação Genética , Terapia Genética , Genótipo , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Membro Posterior , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/terapia , Peptídeos e Proteínas de Sinalização Intercelular , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatologia , Isquemia/terapia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Fosforilação , Interferência de RNA , Ratos Endogâmicos SHR , Transdução de Sinais , Estresse Mecânico , Transfecção , Estados Unidos , Vasodilatação , eIF-2 Quinase/metabolismo
9.
BMC Bioinformatics ; 17 Suppl 2: 14, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26821710

RESUMO

BACKGROUND: Mecp2 null mice model Rett syndrome (RTT) a human neurological disorder affecting females after apparent normal pre- and peri-natal developmental periods. Neuroanatomical studies in cerebral cortex of RTT mouse models revealed delayed maturation of neuronal morphology and autonomous as well as non-cell autonomous reduction in dendritic complexity of postnatal cortical neurons. However, both morphometric parameters and high-resolution expression profile of cortical neurons at embryonic developmental stage have not yet been studied. Here we address these topics by using embryonic neuronal primary cultures from Mecp2 loss of function mouse model. RESULTS: We show that embryonic primary cortical neurons of Mecp2 null mice display reduced neurite complexity possibly reflecting transcriptional changes. We used RNA-sequencing coupled with a bioinformatics comparative approach to identify and remove the contribution of variable and hard to quantify non-neuronal brain cells present in our in vitro cell cultures. CONCLUSIONS: Our results support the need to investigate both Mecp2 morphological as well as molecular effect in neurons since prenatal developmental stage, long time before onset of Rett symptoms.


Assuntos
Encéfalo/patologia , Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/embriologia , Síndrome de Rett/genética , Animais , Astrócitos/metabolismo , Encéfalo/embriologia , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Biologia Computacional , Dendritos/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Camundongos , Neuroglia/metabolismo , Neurônios/citologia , Síndrome de Rett/patologia , Análise de Sequência de RNA
10.
Circulation ; 131(17): 1495-505; discussion 1505, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25747934

RESUMO

BACKGROUND: Pentraxin 3 (PTX3), the prototype of long pentraxins, has been described to be associated with endothelial dysfunction in different cardiovascular disorders. No study has yet evaluated the possible direct effect of PTX3 on vascular function. METHODS AND RESULTS: Through in vitro experiments of vascular reactivity and ultrastructural analyses, we demonstrate that PTX3 induces dysfunction and morphological changes in the endothelial layer through a P-selectin/matrix metalloproteinase-1 pathway. The latter hampered the detachment of endothelial nitric oxide synthase from caveolin-1, leading to an impairment of nitric oxide signaling. In vivo studies showed that administering PTX3 to wild-type mice induced endothelial dysfunction and increased blood pressure, an effect absent in P-selectin-deficient mice. In isolated human umbilical vein endothelial cells, PTX3 significantly blunted nitric oxide production through the matrix metalloproteinase-1 pathway. Finally, using ELISA, we found that hypertensive patients (n=31) have higher plasma levels of PTX3 and its mediators P-selectin and matrix metalloproteinase-1 than normotensive subjects (n=21). CONCLUSIONS: Our data show for the first time a direct role of PTX3 on vascular function and blood pressure homeostasis, identifying the molecular mechanisms involved. The findings in humans suggest that PTX3, P-selectin, and matrix metalloproteinase-1 may be novel biomarkers that predict the onset of vascular dysfunction in hypertensive patients.


Assuntos
Proteína C-Reativa/fisiologia , Endotélio Vascular/fisiopatologia , Hipertensão/fisiopatologia , Metaloproteinase 1 da Matriz/fisiologia , Selectina-P/fisiologia , Componente Amiloide P Sérico/fisiologia , Animais , Pressão Sanguínea , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Metaloproteinase 1 da Matriz/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/fisiologia , Óxido Nítrico/metabolismo , Receptores de IgG/deficiência , Transdução de Sinais/fisiologia , Vasodilatação
11.
Neurochem Res ; 41(4): 924-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26700429

RESUMO

mGlu1 and mGlu5 metabotropic glutamate receptors are expressed in the vertebrate retina, and are co-localized in some retinal neurons. It is believed that both receptors are coupled to polyphosphoinositide (PI) hydrolysis in the retina and their function may diverge in some cells because of a differential engagement of downstream signaling molecules. Here, we show that it is only the mGlu1 receptor that is coupled to PI hydrolysis in the retina. We used either bovine retinal slices or intact mouse retinas challenged with the mixed mGlu1/5 receptor agonist, DHPG. In both models, DHPG-stimulated PI hydrolysis was abrogated by the selective mGlu1 receptor antagonist, JNJ16259685, but was insensitive to the mGlu5 receptor antagonist, MPEP. In addition, the PI response to DHPG was unchanged in the retina of mGlu5(-/-) mice but was abolished in the retina of crv4 mice lacking mGlu1 receptors. Stimulation of the mitogen-activated protein kinase pathway by DHPG in intact mouse retinas were also entirely mediated by mGlu1 receptors. Our data provide the first example of a tissue in which a biochemically detectable PI response is mediated by mGlu1, but not mGlu5, receptors. Hence, bovine retinal slices might be used as a model for the functional screening of mGlu1 receptor ligands. In addition, the mGlu1 receptor caters the potential as a drug target in the experimental treatment of degenerative disorders of the retina.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Retina/metabolismo , Animais , Bovinos , Glicina/análogos & derivados , Glicina/farmacologia , Hidrólise , Fosfatos de Inositol/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/genética , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/genética , Resorcinóis/farmacologia , Transdução de Sinais
12.
Immun Ageing ; 12: 27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26675039

RESUMO

BACKGROUND: People that reach extreme ages (Long-Living Individuals, LLIs) are object of intense investigation for increase/decrease of genetic variant frequencies, genetic methylation levels, protein abundance in serum and tissues. The aim of these studies is the discovery of the mechanisms behind LLIs extreme longevity and the identification of markers of well-being. We have recently associated a BPIFB4 haplotype (LAV) with exceptional longevity under a homozygous genetic model, and identified that CD34(+) of LLIs subjects express higher BPIFB4 transcript as compared to CD34(+) of control population. It would be of interest to correlate serum BPIFB4 protein levels with exceptional longevity and health status of LLIs. METHODS: Western blots on cellular medium to detect BPIFB4 secretion in transfected HEK293T cells with plasmid carrying BPIFB4 and ELISA on LLIs serum to detect BPIFB4 levels. RESULTS: Here we show that BPIFB4 is a secreted protein and its levels are increased in serum of LLIs, and high BPIFB4 levels classify their health status. CONCLUSIONS: Serum BPIFB4 protein levels classify longevity and health status in LLIs. Further studies are required to evaluate the possible role of BPIFB4 in monitoring disease progression.

13.
Neurobiol Dis ; 68: 66-77, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24769161

RESUMO

Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both -/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress.


Assuntos
Lesões Encefálicas/etiologia , Proteína 2 de Ligação a Metil-CpG/genética , Mutação/genética , Estresse Oxidativo/fisiologia , Síndrome de Rett/complicações , Síndrome de Rett/genética , Aldeídos/metabolismo , Análise de Variância , Animais , Ácido Araquidônico/metabolismo , Lesões Encefálicas/sangue , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Isoprostanos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nestina/genética , Neuroprostanos/metabolismo , Síndrome de Rett/sangue
14.
Exp Eye Res ; 120: 109-17, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24486457

RESUMO

The study was designed to investigate the effects of a new ophthalmic solution containing 0.05% vitamin B12 0.05% on corneal nerve regeneration in rats after corneal injury. Eyes of anesthetized male Wistar rats were subjected to corneal injury by removing the corneal epithelium with corneal brush (Algerbrush). After the epithelial debridement, the right eye of each animal received the instillation of one drop of the ophthalmic solution containing vitamin B12 0.05% plus taurine 0.5% and sodium hyaluronate 0.5% four time per day for 10 or 30 days. Left eyes were used as control and treated with solution containing taurine 0.5% and sodium hyaluronate 0.5% alone following the same regimen. Fluorescein staining by slit-lamp and morphological analysis was used to determine corneal wound healing. Immunohistochemistry, immunoblot and confocal microscopy were used to examine corneal re-innervation. Slit-lamp and histological analyses showed that re-epithelization of the corneas was accelerated in rats treated with vitamin B12. A clear-cut difference between the two groups of rats was seen after 10 days of treatment, whereas a near-to-complete re-epithelization was observed in both groups at 30 days. Vitamin B12 treatment had also a remarkable effect on corneal re-innervation, as shown by substantial increased in the expression of neurofilament 160 and ß-III tubulin at both 10 and 30 days. The presence of SV2A-positive nerve endings suggests the presence of synapse-like specialized structures in corneal epithelium of the eye treated with vitamin B12. Our findings suggest that vitamin B12 treatment represents a powerful strategy to accelerate not only re-epithelization but also corneal re-innervation after mechanical injury.


Assuntos
Córnea/inervação , Traumatismos Oculares/fisiopatologia , Regeneração Nervosa/efeitos dos fármacos , Nervo Oftálmico/fisiologia , Vitamina B 12/farmacologia , Complexo Vitamínico B/farmacologia , Ferimentos não Penetrantes/fisiopatologia , Animais , Lesões da Córnea , Fluorofotometria , Concentração de Íons de Hidrogênio , Immunoblotting , Imuno-Histoquímica , Masculino , Microscopia Confocal , Proteínas de Neurofilamentos/metabolismo , Soluções Oftálmicas , Concentração Osmolar , Ratos , Ratos Wistar , Taurina/farmacologia , Tubulina (Proteína)/metabolismo
15.
Circulation ; 124(12): 1337-50, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21900081

RESUMO

BACKGROUND: Heart failure is one of the leading causes of mortality and is primarily the final stage of several overload cardiomyopathies, preceded by an early adaptive hypertrophic response and characterized by coordinated cardiomyocyte growth, angiogenesis, and inflammation. Therefore, growth factors and cytokines have to be critically regulated during cardiac response to transverse aortic constriction. Interestingly, the dual properties of placental growth factor as an angiogenic factor and cytokine make it a candidate to participate in cardiac remodeling in response to hemodynamic overload. METHODS AND RESULTS: After transverse aortic constriction, placental growth factor knockout mice displayed a dysregulation of cardiac remodeling, negatively affecting muscle growth. Molecular insights underscored that this effect was ascribable mainly to a failure in the establishment of adequate inflammatory response owing to an impaired activity of tumor necrosis factor-α-converting enzyme. Interestingly, after transverse aortic constriction, placental growth factor knockout mice had strongly increased levels of tissue inhibitor of metalloproteinases-3, the main natural TACE inhibitor, thus indicating an unbalance of the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-α-converting enzyme axis. Strikingly, when we used an in vivo RNA interference approach to reduce tissue inhibitor of metalloproteinases-3 levels in placental growth factor knockout mice during transverse aortic constriction, we obtained a complete phenotype rescue of early dilated cardiomyopathy. CONCLUSIONS: Our results demonstrate that placental growth factor finely tunes a balanced regulation of the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-α-converting enzyme axis and the consequent TNF-α activation in response to transverse aortic constriction, thus allowing the establishment of an inflammatory response necessary for adaptive cardiac remodeling.


Assuntos
Proteínas ADAM/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Miocardite/fisiopatologia , Proteínas da Gravidez/fisiologia , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Remodelação Ventricular/fisiologia , Proteínas ADAM/fisiologia , Proteína ADAM17 , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Animais , Aorta/fisiopatologia , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/fisiopatologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Masculino , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocardite/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Fator de Crescimento Placentário , Proteínas da Gravidez/genética , Proteínas da Gravidez/farmacologia , Inibidor Tecidual de Metaloproteinase-3/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Pressão Ventricular/efeitos dos fármacos , Pressão Ventricular/fisiologia , Remodelação Ventricular/efeitos dos fármacos
16.
Neurotox Res ; 37(2): 298-313, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31721049

RESUMO

The neurotoxin 1-methyl,4-phenyl-1,2,3,6-tetrahydropiridine (MPTP) is widely used to produce experimental parkinsonism in rodents and primates. Among different administration protocols, continuous or chronic exposure to small amounts of MPTP is reported to better mimic cell pathology reminiscent of Parkinson's disease (PD). Catecholamine neurons are the most sensitive to MPTP neurotoxicity; however, recent studies have found that MPTP alters the fine anatomy of the spinal cord including motor neurons, thus overlapping again with the spinal cord involvement documented in PD. In the present study, we demonstrate that chronic exposure to low amounts of MPTP (10 mg/kg daily, × 21 days) significantly reduces motor neurons in the ventral lumbar spinal cord while increasing α-synuclein immune-staining within the ventral horn. Spinal cord involvement in MPTP-treated mice extends to Calbindin D28 KDa immune-reactive neurons other than motor neurons within lamina VII. These results were obtained in the absence of significant reduction of dopaminergic cell bodies in the Substantia Nigra pars compacta, while a slight decrease was documented in striatal tyrosine hydroxylase immune-staining. Thus, the present study highlights neuropathological similarities between dopaminergic neurons and spinal motor neurons and supports the pathological involvement of spinal cord in PD and experimental MPTP-induced parkinsonism. Remarkably, the toxic threshold for motor neurons appears to be lower compared with nigral dopaminergic neurons following a chronic pattern of MPTP intoxication. This sharply contrasts with previous studies showing that MPTP intoxication produces comparable neuronal loss within spinal cord and Substantia Nigra.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Stem Cell Reports ; 15(6): 1317-1332, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296675

RESUMO

Methyl-CpG binding protein 2 (MeCP2) has historically been linked to heterochromatin organization, and in mouse cells it accumulates at pericentric heterochromatin (PCH), closely following major satellite (MajSat) DNA distribution. However, little is known about the specific function of MeCP2 in these regions. We describe the first evidence of a role in neurons for MeCP2 and MajSat forward (MajSat-fw) RNA in reciprocal targeting to PCH through their physical interaction. Moreover, MeCP2 contributes to maintenance of PCH by promoting deposition of H3K9me3 and H4K20me3. We highlight that the MeCP2B isoform is required for correct higher-order PCH organization, and underline involvement of the methyl-binding and transcriptional repression domains. The T158 residue, which is commonly mutated in Rett patients, is directly involved in this process. Our findings support the hypothesis that MeCP2 and the MajSat-fw transcript are mutually dependent for PCH organization, and contribute to clarify MeCP2 function in the regulation of chromatin architecture.


Assuntos
DNA Satélite/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , DNA Satélite/genética , Heterocromatina/genética , Histonas/genética , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos
18.
Cell Death Dis ; 11(7): 546, 2020 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-32683420

RESUMO

The longevity-associated variant (LAV) of the bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) has been found significantly enriched in long-living individuals. Neuroinflammation is a key player in Huntington's disease (HD), a neurodegenerative disorder caused by neural death due to expanded CAG repeats encoding a long polyglutamine tract in the huntingtin protein (Htt). Herein, we showed that striatal-derived cell lines with expanded Htt (STHdh Q111/111) expressed and secreted lower levels of BPIFB4, when compared with Htt expressing cells (STHdh Q7/7), which correlated with a defective stress response to proteasome inhibition. Overexpression of LAV-BPIFB4 in STHdh Q111/111 cells was able to rescue both the BPIFB4 secretory profile and the proliferative/survival response. According to a well-established immunomodulatory role of LAV-BPIFB4, conditioned media from LAV-BPIFB4-overexpressing STHdh Q111/111 cells were able to educate Immortalized Human Microglia-SV40 microglial cells. While STHdh Q111/111 dying cells were ineffective to induce a CD163 + IL-10high pro-resolving microglia compared to normal STHdh Q7/7, LAV-BPIFB4 transduction promptly restored the central immune control through a mechanism involving the stromal cell-derived factor-1. In line with the in vitro results, adeno-associated viral-mediated administration of LAV-BPIFB4 exerted a CXCR4-dependent neuroprotective action in vivo in the R6/2 HD mouse model by preventing important hallmarks of the disease including motor dysfunction, body weight loss, and mutant huntingtin protein aggregation. In this view, LAV-BPIFB4, due to its pleiotropic ability in both immune compartment and cellular homeostasis, may represent a candidate for developing new treatment for HD.


Assuntos
Corpo Estriado/patologia , Progressão da Doença , Variação Genética , Doença de Huntington/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Longevidade , Microglia/patologia , Fosfoproteínas/genética , Receptores CXCR4/metabolismo , Animais , Benzilaminas/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Transformada , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclamos/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Inflamação/patologia , Longevidade/genética , Microglia/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo
19.
Autophagy ; 16(8): 1468-1481, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31679456

RESUMO

The identification of the mechanisms predisposing to stroke may improve its preventive and therapeutic strategies in patients with essential hypertension. The role of macroautophagy/autophagy in the development of hypertension-related stroke needs to be clarified. We hypothesized that a defective autophagy may favor hypertension-related spontaneous stroke by promoting mitochondrial dysfunction. We studied autophagy in the stroke-prone spontaneously hypertensive (SHRSP) rat, which represents a clinically relevant model of stroke associated with high blood pressure. We assessed autophagy, mitophagy and NAD+:NADH levels in brains of SHRSP and stroke-resistant SHR fed with high salt diet. Vascular smooth muscle cells silenced for the mitochondrial complex I subunit Ndufc2 gene (NADH:ubiquinone oxidoreductase subunit C2) and cerebral endothelial cells isolated from SHRSP were also used to assess autophagy/mitophagy and mitochondrial function in response to high salt levels. We found a reduction of autophagy in brains of high salt-fed SHRSP. Autophagy impairment was associated with NDUFC2 downregulation, mitochondrial dysfunction and NAD+ depletion. Restoration of NAD+ levels by nicotinamide administration reactivated autophagy and reduced stroke development in SHRSP. A selective reactivation of autophagy/mitophagy by Tat-Beclin 1 also reduced stroke occurrence, restored autophagy/mitophagy and improved mitochondrial function. Endothelial progenitor cells (EPCs) from subjects homozygous for the thymine allele variant at NDUFC2/rs11237379, which is associated with NDUFC2 deficiency and increased stroke risk, displayed an impairment of autophagy and increased senescence in response to high salt levels. EPC senescence was rescued by Tat-Beclin 1. Pharmacological activation of autophagy may represent a novel therapeutic strategy to reduce stroke occurrence in hypertension. ABBREVIATIONS: 10 VSMCs: aortic vascular smooth muscle cells; COX4I1/COX IV: cytochrome c oxidase subunit 4I1; ECs: endothelial cells; EPCs: endothelial progenitor cells; JD: Japanese-style diet; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NAD: nicotinamide adenine dinucleotide; NDUFC2: NADH:ubiquinone oxidoreductase subunit C2; NMN: nicotinamide mononucleotide; RD: regular diet; SHRSP: stroke-prone spontaneously hypertensive rat; SHRSR: stroke-resistant spontaneously hypertensive rat.


Assuntos
Autofagia , Hipertensão/complicações , Acidente Vascular Cerebral/etiologia , Animais , Proteína Beclina-1/metabolismo , Encéfalo/patologia , Sobrevivência Celular , Regulação para Baixo , Células Progenitoras Endoteliais/metabolismo , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Mitofagia , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Ratos Endogâmicos SHR
20.
Brain Res ; 1719: 157-175, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31150652

RESUMO

Methamphetamine (Meth) produces a variety of epigenetic effects in the brain, which are seminal to establish long-lasting alterations in neuronal activity. However, most epigenetic changes were described by measuring the rough amount of either histone acetylation and methylation or direct DNA methylation, without focusing on a specific DNA sequence. This point is key to comprehend Meth-induced phenotypic changes, brain plasticity, addiction and neurodegeneration. In this research paper we analyze the persistence of Meth-induced striatal synucleinopathy at a prolonged time interval of Meth withdrawal. At the same time, Meth-induced alterations, specifically within alpha-synuclein gene (SNCA) or its promoter, were evaluated. We found that exposure to high and/or prolonged doses of Meth, apart from producing nigro-striatal toxicity, determines a long-lasting increase in striatal alpha-synuclein levels. This is consistent along immune-blotting, immune-histochemistry, and electron microscopy. This was neither associated with an increase of SNCA copy number nor with alterations within SNCA sequence. However, we documented persistently demethylation within SNCA promoter, which matches the increase in alpha-synuclein protein. The amount of the native protein, which was measured stoichiometrically within striatal neurons, surpasses the increase reported following SNCA multiplications. Demethylation was remarkable (ten-fold of controls) and steady, even at prolonged time intervals being tested so far (up to 21 days of Meth withdrawal). Similarly alpha-synuclein protein assayed stoichiometrically steadily increased roughly ten-fold of controls. Meth-induced increase of alpha-synuclein was also described within limbic areas. These findings are discussed in the light of Meth-induced epigenetic changes, Meth-induced phenotype alterations, and Meth-induced neurodegeneration.


Assuntos
Metanfetamina/metabolismo , Neurônios/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Corpo Estriado/metabolismo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Masculino , Metanfetamina/efeitos adversos , Metanfetamina/farmacologia , Metilação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , alfa-Sinucleína/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa