RESUMO
We employ UV/Vis Diffuse Reflectance spectroscopy directly coupled with a packed bed flow reactor to extract quantitative kinetic information. We use as a show-case the CuII/CuI redox dynamics during the reduction half cycle of the NH3-Selective Catalytic Reduction (SCR) on Cu-CHA catalysts. Our measurements enable quantification of the fraction of oxidized Cu, reconstructed by Multivariate Curve Resolution (MCR) together with monitoring of the gas-phase evolution during the reaction. These data both on the dynamics of the gas-phase and of the active site oxidation state have been used to assess the reduction half cycle rate equation and estimate the rate constant. Our results in terms of reaction orders and kinetic constant are in line with previous findings in the literature. Overall, our results demonstrate that the combined analysis of the UV spectra and of the gas-phase dynamics provides converging and unparalleled kinetic insight: this approach effectively resolves ambiguities concerning RHC kinetics and mechanism. More in general, this work provides evidence that operando spectroscopy can be used to extract quantitative kinetic information on catalytic cycles.
RESUMO
A mechanism for carbon deposition and its impact on the reaction kinetics of Methane Dry Reforming (MDR) using Rhodium-based catalysts is presented. By integrating Raman spectroscopy with kinetic analysis in an operando-annular chemical reactor under strict chemical conditions, we discovered that carbon deposition on a Rh/α-Al2O3 catalyst follows a nucleation-growth mechanism. The dynamics of carbon aggregates at the surface is found to be ruled by the CO2/CH4 ratio and the inlet CH4 concentration. The findings elucidate the spatiotemporal development of carbon aggregates on the catalyst surface and their effects on catalytic performance. Furthermore, the proposed mechanism for carbon formation shows that the influence of CO2 on MDR kinetics is an indirect result of carbon accumulation over time frames exceeding the turnover frequency, thus reconciling conflicting reports in the literature regarding CO2's kinetic role in MDR.
RESUMO
Though largely influencing the efficiency of a reaction, the molecular-scale details of the local environment of the reactants are experimentally inaccessible hindering an in-depth understanding of a catalyst's reactivity, a prerequisite to maximizing its efficiency. We introduce a method to follow individual molecules and their largely changing environment during a photochemical reaction. The method is illustrated for a rate-limiting step in a photolytic reaction, the dissociation of CO2 on two catalytically relevant surfaces, Ag(100) and Cu(111). We reveal with a single-molecule resolution how the reactant's surroundings evolve with progressing laser illumination and with it their propensity for dissociation. Counteracting processes lead to a volcano-like reactivity. Our unprecedented local view during a photoinduced reaction opens the avenue for understanding the influence of the products on reaction yields on the nanoscale.
RESUMO
Given the strong influence of surface structure on the reactivity of heterogeneous catalysts, understanding the mechanisms that control crystal morphology is an important component of designing catalytic materials with targeted shape and functionality. Herein, we employ density functional theory to examine the impact of growth media on NiO crystal faceting in line with experimental findings, showing that molten-salt synthesis in alkali chlorides (KCl, LiCl, and NaCl) imposes shape selectivity on NiO particles. We find that the production of NiO octahedra is attributed to the dissociative adsorption of H2 O, whereas the formation of trapezohedral particles is associated with the control of the growth kinetics exerted by ordered salt structures on high-index facets. To our knowledge, this is the first observation that growth inhibition of metal-oxide facets occurs by a localized ordering of molten salts at the crystal-solvent interface. These findings provide new molecular-level insight on kinetics and thermodynamics of molten-salt synthesis as a predictive route to shape-engineer metal-oxide crystals.
RESUMO
Density functional theory methods that include dispersive forces are used to show how voids of molecular dimensions enhance reaction rates by the mere confinement of transition states analogous to those involved in homogeneous routes and without requiring specific binding sites or structural defects within confining voids. These van der Waals interactions account for the observed large rate enhancements for NO oxidation in the presence of purely siliceous crystalline frameworks. The minimum free energy paths for NO oxidation within chabazite (CHA) and silicalite (SIL) frameworks involve intermediates similar in stoichiometry, geometry, and kinetic relevance to those involved in the homogeneous route. The termolecular transition state for the kinetically-relevant cis-NOO2NO isomerization to trans-NOO2NO is strongly stabilized by confinement within CHA (by 36.3 kJ mol-1 in enthalpy) and SIL (by 39.2 kJ mol-1); such enthalpic stabilization is compensated, in part, by concomitant entropy losses brought forth by confinement (CHA: 44.9; SIL: 45.3, J mol-1 K-1 at 298 K). These enthalpy and entropy changes upon confinement agree well with those measured and combine to significantly decrease activation free energies and are consistent with the rate enhancements that become larger as temperature decreases because of the more negative apparent activation energies in confined systems compared with homogeneous routes. Calculated free energies of confinement are in quantitative agreement with measured rate enhancements and with their temperature sensitivity. Such quantitative agreements reflect preeminent effects of geometry in determining the van der Waals contributions from contacts between the transition states (TS) and the confining walls and the weak effects of the level of theory on TS geometries. NO oxidation reactions are chosen here to illustrate these remarkable effects of confinement because detailed kinetic analysis of rate data are available, but also because of their critical role in the treatment of combustion effluents and in the synthesis of nitric acid and nitrates. Similar effects are evident from rate enhancements by confinement observed for Diels-Alder and alkyne oligomerization reactions. These reactions also occur in gaseous media at near ambient temperatures, for which enthalpic stabilization upon confinement of their homogeneous transition states becomes the preeminent component of activation free energies.
RESUMO
We propose a numerical strategy based on dynamic load balancing (DLB) aimed at enhancing the computational efficiency of multiscale CFD simulation of reactive flows at catalyst surfaces. Our approach employs DLB combined with a hybrid parallelization technique, integrating both MPI and OpenMP protocols. This results in an optimized distribution of the computational load associated with the chemistry solution across processors, thereby minimizing computational overheads. Through assessments conducted on fixed and fluidized bed reactor simulations, we demonstrated a remarkable improvement of the parallel efficiency from 19 to 87% and from 19 to 91% for the fixed and fluidized bed, respectively. Owing to this improved parallel efficiency, we observe a significant computational speed-up of 1.9 and 2.1 in the fixed and fluidized bed reactor simulations, respectively, compared to simulations without DLB. All in all, the proposed approach is able to improve the computational efficiency of multiscale CFD simulations paving the way for a more efficient exploitation of high-performance computing resources and expanding the current boundaries of feasible simulations.
RESUMO
We propose the use of surface plasmon resonance (SPR) as a distinctive marker for real-time monitoring in reaction conditions of gold nanoparticles supported on α-Al2O3. The study leverages the SPR shape-and-size dependency to monitor metal nanoparticles in reaction conditions, evidencing an influence of both dimensions and agglomerations on the SPR peak position. Operando measurements, coupling UV-vis spectroscopy and catalytic testing, allows to follow the dynamics during nanoparticle formation (Au3+ to Au0 reduction) and during the reverse water gas shift reaction (CO2 + H2 â CO + H2O). The catalyst structure and stability in reaction conditions was further confirmed by operando X-ray spectroscopy and PXRD data. Overall, this approach enables the direct acquisition of information on the structure-activity relationship of metal-based supported catalysts under actual reaction conditions.
RESUMO
Introduction: Information transmission and representation in both natural and artificial networks is dependent on connectivity between units. Biological neurons, in addition, modulate synaptic dynamics and post-synaptic membrane properties, but how these relate to information transmission in a population of neurons is still poorly understood. A recent study investigated local learning rules and showed how a spiking neural network can learn to represent continuous signals. Our study builds on their model to explore how basic membrane properties and synaptic delays affect information transfer. Methods: The system consisted of three input and output units and a hidden layer of 300 excitatory and 75 inhibitory leaky integrate-and-fire (LIF) or adaptive integrate-and-fire (AdEx) units. After optimizing the connectivity to accurately replicate the input patterns in the output units, we transformed the model to more biologically accurate units and included synaptic delay and concurrent action potential generation in distinct neurons. We examined three different parameter regimes which comprised either identical physiological values for both excitatory and inhibitory units (Comrade), more biologically accurate values (Bacon), or the Comrade regime whose output units were optimized for low reconstruction error (HiFi). We evaluated information transmission and classification accuracy of the network with four distinct metrics: coherence, Granger causality, transfer entropy, and reconstruction error. Results: Biophysical parameters showed a major impact on information transfer metrics. The classification was surprisingly robust, surviving very low firing and information rates, whereas information transmission overall and particularly low reconstruction error were more dependent on higher firing rates in LIF units. In AdEx units, the firing rates were lower and less information was transferred, but interestingly the highest information transmission rates were no longer overlapping with the highest firing rates. Discussion: Our findings can be reflected on the predictive coding theory of the cerebral cortex and may suggest information transfer qualities as a phenomenological quality of biological cells.
RESUMO
Introduction: Neurosurgical education should start during medical school to involve more students, favoring the recruitment of the most prepared and motivated ones and spreading this subject to the future medical generations. Despite multiple investigations, a dedicated educational plan does not exist. This study aims to assess the undergraduates' interests, needs, and perceptions of this subject. Materials and Methods: The survey was structured to collect demographic data of the participants, and to explore their interest in neurosurgery, their consideration of its importance in medical school, their opinions about the role of this subject in medical education, their needs in this training, and, the usefulness of this subject for their future career. Results: A total of 156 students participated in the survey. Interest in neurosurgery was shown by 76 (48.7%) participants, however, this subject was also perceived as intimidating by 86 (55.1%). Attending the first 2 years of medical school (p < 0.02), previous interest in neuroscience (p < 0.01), and in a surgical subject (p < 0.01) were the factors associated with a greater interest in this subject. Neurosurgery should be included in all students' education, according to 117 (75.0%) participants and practical operating room training should involve all students, according to 96 (61.5%). The most effective learning methods were considered internship (134, 85.9%), followed by participation in meetings or seminars (113, 72.4%). Online seminars were considered useful by 119 participants (76.3%). Neurosurgery was assessed as a potentially interesting career by 99 students (63.5%), who also considered that it can increase their preparation for other subjects (116, 74.4%). Conclusions: Neurosurgery was positively considered by medicals students, who, however, also perceived it as intimidating and hardly approachable. Demonstration that knowledge of neurosurgical concepts can improve their preparation also in general medical settings and, not only in the field of neuroscience, can be useful to promote their interest toward this subject. A combination of lectures and practical internships is considered an effective learning method, which can be fruitfully associated with new technologies.
RESUMO
We propose a numerical methodology to combine detailed microkinetic modeling and Eulerian-Eulerian methods for the simulation of industrial fluidized bed reactors. An operator splitting-based approach has been applied to solve the detailed kinetics coupled with the solution of multiphase gas-solid flows. Lab and industrial reactor configurations are simulated to assess the capability and the accuracy of the method by using the oxidative coupling of methane as a showcase. A good agreement with lab-scale experimental data (deviations below 10%) is obtained. Moreover, in this specific case, the proposed framework provides a 4-fold reduction of the computational cost required to reach the steady-state when compared to the approach of linearizing the chemical source term. As a whole, the work paves the way to the incorporation of detailed kinetics in the simulation of industrial fluidized reactors.
RESUMO
The increasing environmental concerns due to anthropogenic CO2 emissions have called for an alternate sustainable source to fulfill rising chemical and energy demands and reduce environmental problems. The thermo-catalytic activation and conversion of abundantly available CO2, a thermodynamically stable and kinetically inert molecule, can significantly pave the way to sustainably produce chemicals and fuels and mitigate the additional CO2 load. This can be done through comprehensive knowledge and understanding of catalyst behavior, reaction kinetics, and reactor design. This review aims to catalog and summarize the advances in the experimental and theoretical approaches for CO2 activation and conversion to C1 products via heterogeneous catalytic routes. To this aim, we analyze the current literature works describing experimental analyses (e.g., catalyst characterization and kinetics measurement) as well as computational studies (e.g., microkinetic modeling and first-principles calculations). The catalytic reactions of CO2 activation and conversion reviewed in detail are: (i) reverse water-gas shift (RWGS), (ii) CO2 methanation, (iii) CO2 hydrogenation to methanol, and (iv) dry reforming of methane (DRM). This review is divided into six sections. The first section provides an overview of the energy and environmental problems of our society, in which promising strategies and possible pathways to utilize anthropogenic CO2 are highlighted. In the second section, the discussion follows with the description of materials and mechanisms of the available thermo-catalytic processes for CO2 utilization. In the third section, the process of catalyst deactivation by coking is presented, and possible solutions to the problem are recommended based on experimental and theoretical literature works. In the fourth section, kinetic models are reviewed. In the fifth section, reaction technologies associated with the conversion of CO2 are described, and, finally, in the sixth section, concluding remarks and future directions are provided.
RESUMO
In this work, we investigate the gas-solid heat and mass transfer in catalytically activated periodic open cellular structures, which are considered a promising solution for intensification of catalytic processes limited by external transport, aiming at the derivation of suitable correlations. Computational fluid dynamics is employed to investigate the Tetrakaidekahedral and Diamond lattice structures. The influence of the morphological features and flow conditions on the external transport properties is assessed. The strut diameter is an adequate characteristic length for the formulation of heat and mass transfer correlations; accordingly, a power-law dependence of the Sherwood number to the Reynolds number between 0.33 and 0.67 was found according to the flow regimes in the range 1-128 of the Reynolds number. An additional -1.5-order dependence on the porosity is found. The formulated correlations are in good agreement with the simulation results and allow for the accurate evaluation of the external transfer coefficients for POCS.
RESUMO
We propose and assess a criterion for the application of Brønsted-Evans-Polanyi (BEP) relations for dissociation reactions at surfaces. A theory-to-theory comparison with density functional theory calculations is presented on different reactions, metal catalysts, and surface terminations. In particular, the activation energies of CH, CO, and trans-COOH dissociation reactions on (100), (110), (111), and (211) surfaces of Ni, Cu, Rh, Pd, Ag, and Pt are considered. We show that both the activation energy and the reaction energy can be decomposed into two contributions that reflect the influence of reactant and products in determining either the activation energy or the reaction energy. We show that the applicability of the BEP relation implies that the reaction energy and activation energy correlate to these two contributions in the range of conditions to be described by the BEP relation. A lack of correlation between these components for the activation energy is related to a change in the character of the transition state (TS) and this turns out to be incompatible with a BEP relation because it results in a change of the slope of the BEP relation. Our analysis reveals that these two contributions follow the same trends for the activation energy and for the reaction energy when the path is not characterized either by the formation of stable intermediates or by the change of the binding mechanism of the reactant. As such, one can assess whether a BEP relation can be applied or not for a set of conditions only by means of thermochemical calculations and without requiring the identification of the TS along the reaction pathway. We provide evidence that this criterion can be successfully applied for the preliminary discrimination of the applicability of the BEP relations. For instance, on the one hand, our analysis provides evidence that the two contributions are fully anticorrelated for the trans-COOH dissociation reactions on different metals and surfaces, thus revealing that the reaction is characterized by a change in the TS character. In this situation, no BEP relation can be used to describe the activation energy trend among the different metals and surfaces in full agreement with our DFT calculations. On the other hand, our criterion reveals that the TS character is not expected to change for CH dissociation reactions both for the same facet, different metals and for same metal, different facets, in good agreement with the DFT calculations of the activation energy. The formation of multiple stable intermediates along the reaction pathways and the change of the binding mechanism of one of the reactants are demonstrated to affect the validity of the criterion. As a whole, our findings make possible an assessment of the applicability of the BEP relation and paves the way toward its use for the exploration of complex reaction networks for different metals and surfaces.
RESUMO
We introduce and validate by first-principles calculations an analogy between metal coordination chemistry and the adsorption of polycyclic aromatic hydrocarbons (PAHs) at metal surfaces for the derivation of a model for predicting the PAH adsorption energies. We correlate the binding of PAH on the metal surface with the coordination between metal atom and the ligands in the metal complex, where the formation enthalpy of metal complexes is mainly determined by the strength of a single metal-ligand (M-L) bond and by the number of the M-L bonds. This analogy allows estimation of the adsorption energies only on the basis of the structure of the PAHs and of their adsorption configurations. The adsorption energies of PAHs are found to depend on simple geometric parameters, such as the number of metal-carbon bonds. Moreover, when the lattice of the metal surface is commensurate with the size of benzene rings, the contribution to the adsorption energy from η2-coordination is about twice that from η1-coordination. These results show that the principles of coordination chemistry can facilitate the modeling of processes at metal surfaces, and pave the way to systematically model reactions involving complex adsorbates at surfaces.
RESUMO
In this article, we couple microkinetic modelling, ab initio thermodynamics and Wulff-Kaishew construction to describe the structural variation of catalyst materials as a function of the chemical potential in the reactor. We focus specifically on experiments of catalytic partial oxidation (CPO) of methane on Rh/α-Al2O3. We employ a detailed structureless microkinetic model to calculate the profiles of the gaseous species molar fractions along the reactor coordinate and to select the most abundant reaction intermediates (MARIs) populating the catalyst surfaces in different zones of the reactor. Then, we calculate the most stable bulk and surface structures of the catalyst under different conditions of the reaction environment with density functional theory (DFT) calculations and ab initio thermodynamics, considering the presence of the MARIs on the catalyst surface in thermodynamic equilibrium with the partial pressures of their reservoirs in the gas phase surrounding the catalyst. Finally, we exploit the Wulff-Kaishew construction method to estimate the three-dimensional shape of the catalyst nanoparticles and the distribution of the active sites along the reactor coordinate. We find that the catalyst drastically modifies its morphology during CPO reaction by undergoing phase transition, in agreement with spectroscopy studies reported in the literature. The framework is also successfully applied for the analysis and interpretation of chemisorption experiments for catalyst characterization. These results demonstrate the crucial importance of rigorously accounting for the structural effect in microkinetic modeling simulations and pave the way towards the development of structure-dependent microkinetic analysis of catalytic processes.
RESUMO
In this work, we propose numerical methodologies to combine detailed microkinetic modeling and Eulerian-Lagrangian methods for the multiscale simulation of fluidized bed reactors. In particular, we couple the hydrodynamics description by computational fluid dynamics and the discrete element method (CFD-DEM) with the detailed surface chemistry by means of microkinetic modeling. The governing equations for the gas phase are solved through a segregated approach. The mass and energy balances for each catalytic particle, instead, are integrated adopting both the coupled and the operator-splitting approaches. To reduce the computational burden associated with the microkinetic description of the surface chemistry, in situ adaptive tabulation (ISAT) is employed together with operator-splitting. The catalytic partial oxidation of methane and steam reforming on Rh are presented as a showcase to assess the capability of the methods. An accurate description of the gas and site species is achieved along with up to 4 times speed-up of the simulation, thanks to the combined effect of operator-splitting and ISAT. The proposed approach represents an important step for the first-principles based multiscale analysis of fluidized reactive systems.
RESUMO
In this feature article, the development of methods to enable a hierarchical multiscale approach to the microkinetic analysis of heterogeneous catalytic processes is reviewed. This methodology is an effective route to escape the trap of complication and complexity in multiscale microkinetic modelling. On the one hand, the complication of the problem is related to the fact that the observed catalyst functionality is inherently a multiscale property of the reacting system and its analysis requires bridging the phenomena at different time and length scales. On the other hand, the complexity of the problem derives from the system dimension of the chemical systems, which typically results in a number of elementary steps and species, that are beyond the limit of accessibility of present-day computational power even for the most efficient implementation of atomistic first-principles simulations. The main idea behind the hierarchical approach is to tackle the problem with methods of increasing accuracy in a dual feed-back loop between theory and experiments. The potential of the methodology is shown in the context of unravelling the WGS and r-WGS catalytic mechanisms on Rh catalysts. As a perspective, the extension to structure-dependent microkinetic modelling is discussed.
RESUMO
A general method is proposed to simulate the Raman spectra of adsorbates on metal surfaces. This method is based on an electrostatic-corrected cluster model with additional charges to compensate the loss of coordination of metal atoms, and an external field added to simulate the surface dipole and to reproduce the charge distribution obtained from periodic calculations. As a result, it is possible to couple the phonon calculation with the Raman tensors computed by this corrected cluster model to simulate the Raman spectra of the adsorbates on metal surfaces. In doing so, it is possible to overcome both the infinite dielectric constant of the ideal metal, which makes calculating Raman spectra with current periodic models impossible, and the inaccuracy in adsorbate-metal interactions described by the cluster model. By means of this method, the relative experimental Raman intensity peaks of ethylene adsorbed on metal surfaces were successfully reproduced. Moreover, the model analysis allowed relating the enhancement of the Raman intensity of both CO and ethylene upon chemisorption on the metal surface to both the gain of charges on C atoms and the polarization of orbitals. As such, the proposed method provides an accurate and efficient way to simulate and interpret Raman spectra of adsorbates on metal surfaces.