Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Immun Ageing ; 20(1): 41, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573338

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a leading cause of death and long-term disability worldwide. In addition to primary brain damage, systemic immune alterations occur, with evidence for dysregulated immune responses in aggravating TBI outcome and complications. However, immune dysfunction following TBI has been only partially understood, especially in the elderly who represent a substantial proportion of TBI patients and worst outcome. Therefore, we aimed to conduct an in-depth immunological characterization of TBI patients, by evaluating both adaptive (T and B lymphocytes) and innate (NK and monocytes) immune cells of peripheral blood mononuclear cells (PBMC) collected acutely (< 48 h) after TBI in young (18-45 yo) and elderly (> 65 yo) patients, compared to age-matched controls, and also the levels of inflammatory biomarkers. RESULTS: Our data show that young respond differently than elderly to TBI, highlighting the immune unfavourable status of elderly compared to young patients. While in young only CD4 T lymphocytes are activated by TBI, in elderly both CD4 and CD8 T cells are affected, and are induced to differentiate into subtypes with low cytotoxic activity, such as central memory CD4 T cells and memory precursor effector CD8 T cells. Moreover, TBI enhances the frequency of subsets that have not been previously investigated in TBI, namely the double negative CD27- IgD- and CD38-CD24- B lymphocytes, and CD56dim CD16- NK cells, both in young and elderly patients. TBI reduces the production of pro-inflammatory cytokines TNF-α and IL-6, and the expression of HLA-DM, HLA-DR, CD86/B7-2 in monocytes, suggesting a compromised ability to drive a pro-inflammatory response and to efficiently act as antigen presenting cells. CONCLUSIONS: We described the acute immunological response induced by TBI and its relation with injury severity, which could contribute to pathologic evolution and possibly outcome. The focus on age-related immunological differences could help design specific therapeutic interventions based on patients' characteristics.

2.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810280

RESUMO

The pathophysiology of preeclampsia (PE) is poorly understood; however, there is a large body of evidence that suggests a role of immune cells in the development of PE. Amongst these, B cells are a dominant element in the pathogenesis of PE, and they have been shown to play an important role in various immune-mediated diseases, both as pro-inflammatory and regulatory cells. Perinatal cells are defined as cells from birth-associated tissues isolated from term placentas and fetal annexes and more specifically from the amniotic membrane, chorionic membrane, chorionic villi, umbilical cord (including Wharton's jelly), the basal plate, and the amniotic fluid. They have drawn particular attention in recent years due to their ability to modulate several aspects of immunity, making them promising candidates for the prevention and treatment of various immune-mediated diseases. In this review we describe main findings regarding the multifaceted in vitro and in vivo immunomodulatory properties of perinatal cells, with a focus on B lymphocytes. Indeed, we discuss evidence on the ability of perinatal cells to inhibit B cell proliferation, impair B cell differentiation, and promote regulatory B cell formation. Therefore, the findings discussed herein unveil the possibility to modulate B cell activation and function by exploiting perinatal immunomodulatory properties, thus possibly representing a novel therapeutic strategy in PE.


Assuntos
Linfócitos B/imunologia , Células-Tronco Embrionárias/transplante , Pré-Eclâmpsia/imunologia , Animais , Células-Tronco Embrionárias/imunologia , Feminino , Humanos , Pré-Eclâmpsia/terapia , Gravidez , Transplante de Células-Tronco/métodos
3.
J Cell Mol Med ; 23(2): 1581-1592, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30585395

RESUMO

Inflammation significantly impacts the progression of Huntington's disease (HD) and the mutant HTT protein determines a pro-inflammatory activation of microglia. Mesenchymal stem/stromal cells (MSC) from the amniotic membrane (hAMSC), and their conditioned medium (CM-hAMSC), have been shown to possess protective effects in vitro and in vivo in animal models of immune-based disorders and of traumatic brain injury, which have been shown to be mediated by their immunomodulatory properties. In this study, in the R6/2 mouse model for HD we demonstrate that mice treated with CM-hAMSC display less severe signs of neurological dysfunction than saline-treated ones. CM-hAMSC treatment significantly delayed the development of the hind paw clasping response during tail suspension, reduced deficits in rotarod performance, and decreased locomotor activity in an open field test. The effects of CM-hAMSC on neurological function were reflected in a significant amelioration in brain pathology, including reduction in striatal atrophy and the formation of striatal neuronal intranuclear inclusions. In addition, while no significant increase was found in the expression of BDNF levels after CM-hAMSC treatment, a significant decrease of microglia activation and inducible nitric oxide synthase levels were observed. These results support the concept that CM-hAMSC could act by modulating inflammatory cells, and more specifically microglia.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Meios de Cultivo Condicionados/farmacologia , Doença de Huntington/tratamento farmacológico , Transtornos Motores/tratamento farmacológico , Âmnio/metabolismo , Animais , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Substâncias Protetoras/farmacologia
4.
J Cell Mol Med ; 22(2): 1202-1213, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29105277

RESUMO

Myofibroblasts are key fibrogenic cells responsible for excessive extracellular matrix synthesis characterizing the fibrotic lesion. In liver fibrosis, myofibroblasts derive either from activation of hepatic stellate cells (HSC) and portal fibroblasts (PF), or from the activation of fibroblasts that originate from ductular epithelial cells undergoing epithelial-mesenchymal transition. Ductular cells can also indirectly promote myofibroblast generation by activating TGF-ß, the main fibrogenic growth factor, through αvß6 integrin. In addition, after liver injury, liver sinusoidal cells can lose their ability to maintain HSC quiescence, thus favouring HSC differentiation towards myofibroblasts. The amniotic membrane and epithelial cells (hAEC) derived thereof have been shown to decrease hepatic myofibroblast levels in rodents with liver fibrosis. In this study, in a rat model of liver fibrosis, we investigated the effects of hAEC on resident hepatic cells contributing to myofibroblast generation. Our data show that hAEC reduce myofibroblast numbers with a consequent reduction in fibronectin and collagen deposition. Interestingly, we show that hAEC strongly act on specific myofibroblast precursors. Specifically, hAEC reduce the activation of PF rather than HSC. In addition, hAEC target reactive ductular cells by inhibiting their proliferation and αvß6 integrin expression, with a consequent decrease in TGF-ß activation. Moreover, hAEC counteract the transition of ductular cells towards fibroblasts, while it does not affect injury-induced and fibrosis-promoting sinusoidal alterations. In conclusion, among the emerging therapeutic applications of hAEC in liver diseases, their specific action on PF and ductular cells strongly suggests their application in liver injuries involving the expansion and activation of the portal compartment.


Assuntos
Âmnio/citologia , Células Epiteliais/transplante , Hepatócitos/patologia , Cirrose Hepática/patologia , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/patologia , Células Estreladas do Fígado/patologia , Humanos , Fígado/patologia , Ratos Wistar , Fator de Crescimento Transformador beta/metabolismo
5.
J Cell Mol Med ; 20(1): 157-69, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26515425

RESUMO

Pre-eclampsia (PE) is one of the most severe syndromes in human pregnancy, and the underlying mechanisms of PE have yet to be determined. Pre-eclampsia is characterized by the alteration of the immune system's activation status, an increase in inflammatory Th1/Th17/APC cells, and a decrease in Th2/Treg subsets/cytokines. Moreover, inflammatory infiltrates have been detected in the amniotic membranes of pre-eclamptic placentae, and to this date limited data are available regarding the role of amniotic membrane cells in PE. Interestingly, we and others have previously shown that human amniotic mesenchymal stromal cells (hAMSC) possess anti-inflammatory properties towards almost all immune cells described to be altered in PE. In this study we investigated whether the immunomodulatory properties of hAMSC were altered in PE. We performed a comprehensive study of cell phenotype and investigated the in vitro immunomodulatory properties of hAMSC isolated from pre-eclamptic pregnancies (PE-hAMSC), comparing them to hAMSC from normal pregnancies (N-hAMSC). We demonstrate that PE-hAMSC inhibit CD4/CD8 T-cell proliferation, suppress Th1/Th2/Th17 polarization, induce Treg and block dendritic cells and M1 differentiation switching them to M2 cells. Notably, PE-hAMSC generated a more prominent induction of Treg and higher suppression of interferon-γ when compared to N-hAMSC, and this was associated with higher transforming growth factor-ß1 secretion and PD-L2/PD-L1 expression in PE-hAMSC. In conclusion, for the first time we demonstrate that there is no intrinsic impairment of the immunomodulatory features of PE-hAMSC. Our results suggest that amniotic mesenchymal stromal cells do not contribute to the disease, but conversely, could participate in offsetting the inflammatory environment which characterizes PE.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Pré-Eclâmpsia/imunologia , Âmnio/patologia , Estudos de Casos e Controles , Diferenciação Celular , Polaridade Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Feminino , Humanos , Imunomodulação , Pré-Eclâmpsia/patologia , Gravidez , Linfócitos T/fisiologia
6.
Cytotherapy ; 16(1): 17-32, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24094500

RESUMO

BACKGROUND AND AIMS: We recently demonstrated that injection of conditioned medium (CM) generated from cells of the mesenchymal region of human amniotic membrane (AMTCs) reduces bleomycin-induced lung fibrosis in mice, suggesting a crucial role of paracrine factor(s) secreted by AMTCs in these beneficial effects. We further investigated this hypothesis, the mechanisms involved, the effects on some lung functional parameters and whether AMTC-secreted effector(s) are specific to these cells and not produced by other cell types, extending the time of analysis up to 28 days after treatment. METHODS: Bleomycin-challenged mice were either treated with AMTC-CM or CM generated from human skin fibroblasts, human peripheral blood mononuclear cells or Jurkat cells, or were left untreated. Mouse lungs were analyzed for content of pro-inflammatory and pro-fibrotic molecules, presence of lymphocytes and macrophages and for fibrosis level (through histological semi-quantitative evaluation and quantitative measurement of collagen content). Arterial blood gas analysis was also performed. RESULTS: Up to 28 days after delivery, AMTC-CM-treated mice developed reduced lung fibrosis with respect to mice treated with other CM types. AMTC-CM-treated mice had comparatively better preservation of blood gas parameters and showed lower lung content of interleukin-6, tumor necrosis factor-α, macrophage inflammatory protein-1α, monocyte chemoattractant protein-1 and transforming growth factor-ß associated with reduced lung macrophage levels. CONCLUSIONS: AMTC-CM prevents lung fibrosis in bleomycin-challenged mice, improving survival and preserving lung functional parameters such as blood gas exchanges. The specificity of AMTC-CM action was indicated by the absence of fibrosis reduction when other CM types were used. Finally, we provide some insights into the possible mechanisms underlying AMTC-CM-mediated control of fibrosis.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Pulmão/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Âmnio/citologia , Âmnio/metabolismo , Animais , Bleomicina/toxicidade , Gasometria , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia
7.
iScience ; 26(12): 108483, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077154

RESUMO

Mesenchymal stromal cells (MSCs) are known for their immunomodulatory activity. Here, we report that MSCs isolated from the amniotic membrane of human term placenta (hAMSCs) impact CD8 T cell fate through a multifaceted mechanism. We observed that hAMSCs are able to impact the metabolism of naive CD8 lymphocytes by downregulating the phosphorylation of mTOR and AKT, thus blocking cell differentiation. This effect is due to the ability of hAMSCs to reduce the expression of two receptors, IL-12Rß1 and IL-2RA, resulting in reduced phosphorylation of STAT4 and STAT5. In addition, hAMSCs reduce the expression of two transcriptional factors, Tbet and Eomes, directly involved in early effector cell commitment. Our results unravel an unknown feature of MSCs, offering alternative mechanistic insights into the effects of MSCs for the treatment of diseases characterized by an altered activation of memory subsets, such as autoimmune diseases and graft versus host disease.

8.
J Cell Mol Med ; 16(9): 2208-18, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22260183

RESUMO

Cells derived from the amniotic foetal membrane of human term placenta have drawn particular attention mainly for their plasticity and immunological properties, which render them interesting for stem-cell research and cell-based therapeutic applications. In particular, we have previously demonstrated that amniotic mesenchymal tissue cells (AMTC) inhibit lymphocyte proliferation in vitro and suppress the generation and maturation of monocyte-derived dendritic cells. Here, we show that AMTC also significantly reduce the proliferation of cancer cell lines of haematopoietic and non-haematopoietic origin, in both cell-cell contact and transwell co-cultures, therefore suggesting the involvement of yet-unknown inhibitory soluble factor(s) in this 'cell growth restraint'. Importantly, we provide evidence that the anti-proliferative effect of AMTC is associated with induction of cell cycle arrest in G0/G1 phase. Gene expression analyses demonstrate that AMTC can down-regulate cancer cells' mRNA expression of genes associated with cell cycle progression, such as cyclins (cyclin D2, cyclin E1, cyclin H) and cyclin-dependent kinase (CDK4, CDK6 and CDK2), whilst they up-regulate cell cycle negative regulator such as p15 and p21, consistent with a block in G0/G1 phase with no progression to S phase. Taken together, these findings warrant further studies to investigate the applicability of these cells for controlling cancer cell proliferation in vivo.


Assuntos
Âmnio/citologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Âmnio/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cocultura , Ciclina D2/genética , Ciclina D2/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Ciclina H/genética , Ciclina H/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo , Fase G1/efeitos dos fármacos , Células HeLa , Humanos , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células U937 , Regulação para Cima
9.
Front Immunol ; 13: 960909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052081

RESUMO

Amniotic mesenchymal stromal cells (hAMSCs) have unique immunomodulatory properties demonstrated in vitro and in vivo in various diseases in which the dysregulated immune system plays a major role. The immunomodulatory and pro-regenerative effects of MSCs, among which hAMSCs lie in the bioactive factors they secrete and in their paracrine activity, is well known. The mix of these factors (i.e., secretome) can be either freely secreted or conveyed by extracellular vesicles (EV), thus identifying two components in the cell secretome: EV-free and EV fractions. This study aimed to discern the relative impact of the individual components on the immunomodulatory action of the hAMSC secretome in order to obtain useful information for implementing future therapeutic approaches using immunomodulatory therapies based on the MSC secretome. To this aim, we isolated EVs from the hAMSC secretome (hAMSC-CM) by ultracentrifugation and validated the vesicular product according to the International Society for Extracellular Vesicles (ISEV) criteria. EVs were re-diluted in serum-free medium to maintain the EV concentration initially present in the original CM. We compared the effects of the EV-free and EV fractions with those exerted by hAMSC-CM in toto on the activation and differentiation of immune cell subpopulations belonging to both the innate and adaptive immune systems. We observed that the EV-free fraction, similar to hAMSC-CM in toto, a) decreases the proliferation of activated peripheral blood mononuclear cells (PBMC), b) reduces the polarization of T cells toward inflammatory Th subsets, and induces the induction of regulatory T cells; c) affects monocyte polarization to antigen-presenting cells fostering the acquisition of anti-inflammatory macrophage (M2) markers; and d) reduces the activation of B lymphocytes and their maturation to plasma cells. We observed instead that all investigated EV fractions, when used in the original concentrations, failed to exert any immunomodulatory effect, even though we show that EVs are internalized by various immune cells within PBMC. These findings suggest that the active component able to induce immune regulation, tested at original concentrations, of the hAMSC secretome resides in factors not conveyed in EVs. However, EVs isolated from hAMSC could exert actions on other cell types, as reported by others.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Vesículas Extracelulares/metabolismo , Imunomodulação , Leucócitos Mononucleares , Células-Tronco Mesenquimais/metabolismo , Secretoma
10.
Stem Cell Res Ther ; 12(1): 540, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641958

RESUMO

BACKGROUND: It is now well established that factors (free or in extracellular vesicles) secreted by mesenchymal stromal cells (MSC) are important mediators of MSC regenerative actions. Herein we produced the secretome (conditioned medium, CM) from MSC isolated from the amniotic membrane (hAMSC) and CM from the intact amniotic membrane (hAM, no manipulation or enzymatic digestion) in order to potentially identify an effective, easy and less expensive secretome to produce for potential applications in regenerative medicine. Given that immunomodulation is a key mechanism of action through which hAMSC contributes to tissue regeneration, we used a comprehensive panel of in vitro immunomodulatory tests to compare the CMs. METHODS: Amniotic membranes were either cut into fragments or used for hAMSC isolation. CMs from hAMSC at passages 0 and 2 were collected after a standard 5-day culture while CM from hAM was collected after a 2- and 5-day culture. Immunomodulation was assessed in terms of PBMC and T-cell proliferation, T-cell subset polarization, T-regulatory cell induction, cell cytotoxicity and monocyte differentiation toward antigen-presenting cells. Furthermore, we performed a comparison between CM obtained from single donors and pooled CM. We also assessed the impact of lyophilization on the immunomodulatory properties of CM. RESULTS: We demonstrate that CM from hAM has comparable immunomodulatory properties to CM from hAMSC at passages 0 and 2. Furthermore, we demonstrate that pooled CMs have similar effects when compared to CM from single donors used separately. Finally, we demonstrate that lyophilization does not alter the in vitro immunomodulatory properties of CM from hAM and hAMSC. CONCLUSIONS: The results presented herein support the possibility to produce secretome from intact hAM and open the prospect to highly improve the scalability of the GMP production process while reducing the costs and time related to the process of cell isolation and expansion. Moreover, the possibility of having a lyophilized secretome that maintains its original properties would allow for a ready-to-use product with easier handling, shipping and storage. The use of a lyophilized product will also facilitate clinicians by permitting customized reconstitution volumes and methods according to the most suitable formula required by the clinical application.


Assuntos
Células-Tronco Mesenquimais , Medicina Regenerativa , Âmnio , Diferenciação Celular , Leucócitos Mononucleares
11.
Stem Cells Transl Med ; 10(11): 1516-1529, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34327849

RESUMO

Currently, more than 30 000 allogeneic hematopoietic stem cell (HSC) transplantations have been performed for the treatment of hematological and nonhematological diseases using HSC from umbilical cord blood (CB). However, the wide utilization of CB as a source of HSC is limited by the low number of cells recovered. One strategy to expand ex vivo CB-HSC is represented by the use of bone marrow mesenchymal stromal cells (BM-MSCs) as a feeder to enhance HSC proliferation while maintaining HSC stemness. Indeed, BM-MSCs have been recognized as one of the most relevant players in the HSC niche. Thus, it has been hypothesized that they can support the ex vivo expansion of HSC by mimicking the physiological microenvironment present in the hematopoietic niche. Due to the role of placenta in supporting fetal hematopoiesis, MSC derived from the amniotic membrane (hAMSC) of human term placenta could represent an interesting alternative to BM-MSC as a feeder layer to enhance the proliferation and maintain HSC stemness. Therefore, in this study we investigated if hAMSC could support the ex vivo expansion of HSC and progenitor cells. The capacity of hAMSCs to support the ex vivo expansion of CB-HSC was evaluated in comparison to the control condition represented by the CB-CD34+ cells without a feeder layer. The coculture was performed at two different CD34+ :MSC ratios (1:2 and 1:8) in both cell-to-cell contact and transwell setting. After 7 days, the cells were collected and analyzed for phenotype and functionality. Our results suggest that hAMSCs represent a valuable alternative to BM-MSC to support: (a) the ex vivo expansion of CB-HSC in both contact and transwell systems, (b) the colony forming unit ability, and (c) long-term culture initiating cells ability. Overall, these findings may contribute to address the unmet need of high HSC content in CB units available for transplantation.


Assuntos
Sangue Fetal , Células-Tronco Mesenquimais , Âmnio/metabolismo , Antígenos CD34/metabolismo , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Feminino , Células-Tronco Hematopoéticas/metabolismo , Humanos , Gravidez , Células Estromais/metabolismo
12.
Front Cell Dev Biol ; 8: 447, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637408

RESUMO

The tumor microenvironment (TME) plays a critical role in tumorigenesis and is composed of different cellular components, including immune cells and mesenchymal stromal cells (MSCs). In this review, we will discuss MSCs in the TME setting and more specifically their interactions with immune cells and how they can both inhibit (immunosurveillance) and favor (immunoediting) tumor growth. We will also discuss how MSCs are used as a therapeutic strategy in cancer. Due to their unique immunomodulatory properties, MSCs isolated from perinatal tissues are intensely explored as therapeutic interventions in various inflammatory-based disorders with promising results. However, their therapeutic applications in cancer remain for the most part controversial and, importantly, the interactions between administered perinatal MSC and immune cells in the TME remain to be clearly defined.

13.
Stem Cell Res Ther ; 11(1): 99, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131892

RESUMO

BACKGROUND: Equine amniotic mesenchymal stromal cells (AMSCs) and their conditioned medium (CM) were evaluated for their ability to inhibit in vitro proliferation of peripheral blood mononuclear cells (PBMCs) with and without priming. Additionally, AMSC immunogenicity was assessed by expression of MHCI and MHCII and their ability to counteract the in vitro inflammatory process. METHODS: Horse PBMC proliferation was induced with phytohemagglutinin. AMSC priming was performed with 10 ng/ml of TNF-α, 100 ng/ml of IFN-γ, and a combination of 5 ng/ml of TNF-α and 50 ng/ml of IFN-γ. The CM generated from naïve unprimed and primed AMSCs was also tested to evaluate its effects on equine endometrial cells in an in vitro inflammatory model induced by LPS. Immunogenicity marker expression (MHCI and II) was evaluated by qRT-PCR and by flow cytometry. RESULTS: Priming does not increase MHCI and II expression. Furthermore, the inhibition of PBMC proliferation was comparable between naïve and conditioned cells, with the exception of AMSCs primed with both TNF-α and IFN-γ that had a reduced capacity to inhibit T cell proliferation. However, AMSC viability was lower after priming than under other experimental conditions. CM from naïve and primed AMSCs strongly inhibited PBMC proliferation and counteracted the inflammatory process, rescuing about 65% of endometrial cells treated by LPS. CONCLUSION: AMSCs and their CM have a strong capacity to inhibit PBMC proliferation, and priming is not necessary to improve their immunosuppressive activity or reactivity in an inflammatory in vitro model.


Assuntos
Células-Tronco Mesenquimais , Âmnio , Animais , Células Cultivadas , Meios de Cultivo Condicionados , Citocinas/genética , Cavalos , Leucócitos Mononucleares
14.
Cells ; 9(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935836

RESUMO

Placenta-derived mesenchymal stromal cells (MSC) have attracted more attention for their immune modulatory properties and poor immunogenicity, which makes them suitable for allogeneic transplantation. Although MSC isolated from different areas of the placenta share several features, they also present significant biological differences, which might point to distinct clinical applications. Hence, we compared cells from full term placenta distinguishing them on the basis of their origin, either maternal or fetal. We used cells developed by Pluristem LTD: PLacenta expanded mesenchymal-like adherent stromal cells (PLX), maternal-derived cells (PLX-PAD), fetal-derived cells (PLX-R18), and amniotic membrane-derived MSC (hAMSC). We compared immune modulatory properties evaluating effects on T-lymphocyte proliferation, expression of cytotoxicity markers, T-helper and T-regulatory cell polarization, and monocyte differentiation toward antigen presenting cells (APC). Furthermore, we investigated cell immunogenicity. We show that MSCs and MSC-like cells from both fetal and maternal sources present immune modulatory properties versus lymphoid (T cells) and myeloid (APC) cells, whereby fetal-derived cells (PLX-R18 and hAMSC) have a stronger capacity to modulate immune cell proliferation and differentiation. Our results emphasize the importance of understanding the cell origin and characteristics in order to obtain a desired result, such as modulation of the inflammatory response that is critical in fostering regenerative processes.


Assuntos
Feto/citologia , Células-Tronco Mesenquimais/citologia , Placenta/citologia , Medicina Regenerativa , Células Apresentadoras de Antígenos/citologia , Biomarcadores/metabolismo , Morte Celular , Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Feminino , Humanos , Imunofenotipagem , Subpopulações de Linfócitos/citologia , Subpopulações de Linfócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Monócitos/citologia , Gravidez , Linfócitos T/citologia
15.
Front Immunol ; 11: 1156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582218

RESUMO

Mesenchymal stromal cells (MSC) from the amniotic membrane of human term placenta (hAMSC), and the conditioned medium generated from their culture (CM-hAMSC) offer significant tools for their use in regenerative medicine mainly due to their immunomodulatory properties. Interestingly, hAMSC and their CM have been successfully exploited in preclinical disease models of inflammatory and autoimmune diseases where depletion or modulation of B cells have been indicated as an effective treatment, such as inflammatory bowel disease, lung fibrosis, would healing, collagen-induced arthritis, and multiple sclerosis. While the interactions between hAMSC or CM-hAMSC and T lymphocytes, monocytes, dendritic cells, and macrophages has been extensively explored, how they affect B lymphocytes remains unclear. Considering that B cells are key players in the adaptive immune response and are a central component of different diseases, in this study we investigated the in vitro properties of hAMSC and CM-hAMSC on B cells. We provide evidence that both hAMSC and CM-hAMSC strongly suppressed CpG-activated B-cell proliferation. Moreover, CM-hAMSC blocked B-cell differentiation, with an increase of the proportion of mature B cells, and a reduction of antibody secreting cell formation. We observed the strong inhibition of B cell terminal differentiation into CD138+ plasma cells, as further shown by a significant decrease of the expression of interferon regulatory factor 4 (IRF-4), PR/SET domain 1(PRDM1), and X-box binding protein 1 (XBP-1) genes. Our results point out that the mechanism by which CM-hAMSC impacts B cell proliferation and differentiation is mediated by secreted factors, and prostanoids are partially involved in these actions. Factors contained in the CM-hAMSC decreased the CpG-uptake sensors (CD205, CD14, and TLR9), suggesting that B cell stimulation was affected early on. CM-hAMSC also decreased the expression of interleukin-1 receptor-associated kinase (IRAK)-4, consequently inhibiting the entire CpG-induced downstream signaling pathway. Overall, these findings add insight into the mechanism of action of hAMSC and CM-hAMSC and are useful to better design their potential therapeutic application in B-cell mediated diseases.


Assuntos
Âmnio/citologia , Linfócitos B/imunologia , Ativação Linfocitária/imunologia , Células-Tronco Mesenquimais/metabolismo , Linfócitos B/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Humanos , Ativação Linfocitária/efeitos dos fármacos
16.
Front Bioeng Biotechnol ; 8: 554530, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240862

RESUMO

Bladder cancer is one of the most common cancers among men in industrialized countries and on the global level incidence and mortality rates are increasing. In spite of progress in surgical treatment and chemotherapy, the prognosis remains poor for patients with muscle-invasive bladder cancer. Therefore, there is a great need for the development of novel therapeutic approaches. The human amniotic membrane (hAM) is a multi-layered membrane that comprises the innermost part of the placenta. It has unique properties that make it suitable for clinical use, such as the ability to promote wound healing and decrease scarring, low immunogenicity, and immunomodulatory, antimicrobial and anticancer properties. This study aimed to investigate the effect of (i) hAM-derived cells and (ii) hAM scaffolds on the growth dynamics, proliferation rate, and invasive potential of muscle-invasive bladder cancer T24 cells. Our results show that 24 and 48 h of co-culturing T24 cells with hAM-derived cells (at 1:1 and 1:4 ratios) diminished the proliferation rate of T24 cells. Furthermore, when seeded on hAM scaffolds, namely (1) epithelium of hAM (e-hAM), (2) basal lamina of hAM (denuded; d-hAM), and (3) stroma of hAM (s-hAM), the growth dynamic of T24 cells was altered and proliferation was reduced, even more so by the e-hAM scaffolds. Importantly, despite their muscle-invasive potential, the T24 cells did not disrupt the basal lamina of hAM scaffolds. Furthermore, we observed a decrease in the expression of epithelial-mesenchymal transition (EMT) markers N-cadherin, Snail and Slug in T24 cells grown on hAM scaffolds and individual T24 cells even expressed epithelial markers E-cadherin and occludin. Our study brings new knowledge on basic mechanisms of hAM affecting bladder carcinogenesis and the results serve as a good foundation for further research into the potential of hAM-derived cells and the hAM extracellular matrix to serve as a novel bladder cancer treatment.

17.
Stem Cells Transl Med ; 9(9): 1023-1035, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32452646

RESUMO

Growing evidence suggests a mechanistic link between inflammation and the development and progression of fibrotic processes. Mesenchymal stromal cells derived from the human amniotic membrane (hAMSCs), which display marked immunomodulatory properties, have been shown to reduce bleomycin-induced lung fibrosis in mice, possibly by creating a microenvironment able to limit the evolution of chronic inflammation to fibrosis. However, the ability of hAMSCs to modulate immune cells involved in bleomycin-induced pulmonary inflammation has yet to be elucidated. Herein, we conducted a longitudinal study of the effects of hAMSCs on alveolar and lung immune cell populations upon bleomycin challenge. Immune cells collected through bronchoalveolar lavage were examined by flow cytometry, and lung tissues were used to study gene expression of markers associated with different immune cell types. We observed that hAMSCs increased lung expression of T regulatory cell marker Foxp3, increased macrophage polarization toward an anti-inflammatory phenotype (M2), and reduced the antigen-presentation potential of macrophages and dendritic cells. For the first time, we demonstrate that hAMSCs markedly reduce pulmonary B-cell recruitment, retention, and maturation, and counteract the formation and expansion of intrapulmonary lymphoid aggregates. Thus, hAMSCs may hamper the self-maintaining inflammatory condition promoted by B cells that continuously act as antigen presenting cells for proximal T lymphocytes in injured lungs. By modulating B-cell response, hAMSCs may contribute to blunting of the chronicization of lung inflammatory processes with a consequent reduction of the progression of the fibrotic lesion.


Assuntos
Âmnio/citologia , Linfócitos B/imunologia , Diferenciação Celular , Pulmão/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/terapia , Animais , Células Apresentadoras de Antígenos/metabolismo , Bleomicina , Agregação Celular , Quimiocinas/metabolismo , Humanos , Inflamação/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/complicações , Lesão Pulmonar/terapia , Subpopulações de Linfócitos/imunologia , Camundongos , Fibrose Pulmonar/complicações , Linfócitos T/imunologia
18.
Stem Cells ; 26(1): 182-92, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17901399

RESUMO

Cells derived from the amniotic membrane of human placenta have been receiving particular attention because of their stem cell potentiality and immunomodulatory properties, which make them an attractive candidate source for cell therapy approaches. In this study, we isolated cells from the mesenchymal region of amnion and identified two subpopulations discordant for expression of the HLA-DR, CD45, CD14, and CD86 cellular markers. We therefore refer to the unfractionated cell population derived from this region as amniotic mesenchymal tissue cells (AMTC). We studied the suppressive and stimulatory characteristics of the unfractionated, HLA-DR-positive, and HLA-DR-negative AMTC populations and demonstrated that all three fail to induce an allogeneic T-cell response. However, unfractionated AMTC, which could inhibit T-cell allogeneic proliferation responses, induced proliferation of T cells stimulated via the T-cell receptor (TcR), in a cell-cell contact setting. We have shown that this stimulatory capacity can be attributed to the HLA-DR-positive AMTC subpopulation. Indeed, even though the HLA-DR-positive AMTC fraction surprisingly failed to induce proliferation of resting allogeneic T cells, they could cause strong proliferation of anti-CD3-primed allogeneic T cells. This stimulatory effect was not observed using the HLA-DR-negative AMTC fraction. The revelation that human amniotic mesenchyme possesses cell populations with both suppressive and stimulatory properties sheds additional light on the immunomodulatory functions of this tissue and may contribute to the clarification of some ongoing controversies associated with mesenchymal stromal cells of other sources, such as the presence of HLA-DR-positive cells and the suppressive versus stimulatory properties of these cells.


Assuntos
Âmnio/citologia , Âmnio/imunologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Linfócitos T/metabolismo , Antígenos CD28/metabolismo , Complexo CD3/metabolismo , Proliferação de Células , Técnicas de Cocultura , Feminino , Citometria de Fluxo , Antígenos HLA-DR , Humanos , Tolerância Imunológica , Imuno-Histoquímica , Ativação Linfocitária/imunologia , Teste de Cultura Mista de Linfócitos , Polimorfismo de Fragmento de Restrição , Gravidez , Linfócitos T/imunologia , Transplante Homólogo
19.
Stem Cells ; 26(2): 300-11, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17975221

RESUMO

Placental tissue draws great interest as a source of cells for regenerative medicine because of the phenotypic plasticity of many of the cell types isolated from this tissue. Furthermore, placenta, which is involved in maintaining fetal tolerance, contains cells that display immunomodulatory properties. These two features could prove useful for future cell therapy-based clinical applications. Placental tissue is readily available and easily procured without invasive procedures, and its use does not elicit ethical debate. Numerous reports describing stem cells from different parts of the placenta, using nearly as numerous isolation and characterization procedures, have been published. Considering the complexity of the placenta, an urgent need exists to define, as clearly as possible, the region of origin and methods of isolation of cells derived from this tissue. On March 23-24, 2007, the first international Workshop on Placenta Derived Stem Cells was held in Brescia, Italy. Most of the research published in this area focuses on mesenchymal stromal cells isolated from various parts of the placenta or epithelial cells isolated from amniotic membrane. The aim of this review is to summarize and provide the state of the art of research in this field, addressing aspects such as cell isolation protocols and characteristics of these cells, as well as providing preliminary indications of the possibilities for use of these cells in future clinical applications.


Assuntos
Separação Celular/métodos , Células-Tronco Embrionárias/citologia , Placenta/citologia , Âmnio/citologia , Âmnio/imunologia , Animais , Antígenos de Superfície/metabolismo , Adesão Celular , Diferenciação Celular , Córion/citologia , Córion/imunologia , Ensaio de Unidades Formadoras de Colônias , Células-Tronco Embrionárias/imunologia , Células-Tronco Embrionárias/transplante , Células Epiteliais/citologia , Células Epiteliais/imunologia , Feminino , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Tolerância Imunológica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Camundongos , Placenta/imunologia , Gravidez , Transplante de Células-Tronco , Células Estromais/citologia , Células Estromais/imunologia , Bancos de Tecidos , Trofoblastos/citologia , Trofoblastos/imunologia
20.
Cells ; 8(11)2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703272

RESUMO

During pregnancy, a successful coexistence between the mother and the semi-allogenic fetus occurs which requires a dynamic immune system to guarantee an efficient immune protection against possible infections and tolerance toward fetal antigens. The mechanism of fetal-maternal tolerance is still an open question. There is growing in vitro and in vivo evidence that mesenchymal stromal cells (MSC) which are present in perinatal tissues have a prominent role in generating a functional microenvironment critical to a successful pregnancy. This review highlights the immunomodulatory properties of perinatal MSC and their impact on the major immune cell subsets present in the uterus during pregnancy, such as natural killer cells, antigen-presenting cells (macrophages and dendritic cells), and T cells. Here, we discuss the current understanding and the possible contribution of perinatal MSC in the establishment of fetal-maternal tolerance, providing a new perspective on the physiology of gestation.


Assuntos
Feto/imunologia , Tolerância Imunológica/imunologia , Células-Tronco Mesenquimais/imunologia , Animais , Feminino , Humanos , Gravidez , Útero/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa