Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Environ Res ; 252(Pt 3): 119035, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38685302

RESUMO

Lake Baikal, the largest freshwater lake by volume, provides drinking water and aquatic food supplies to over 2.5 million people. However, the lake has been contaminated with recalcitrant pollutants released from surrounding industrial complexes, agriculture, and natural lands, thereby increasing the risk of their bioaccumulation in fish and seals. Yet, a collective analysis of historical concentration data and their bioaccumulation potential as well as what factors drive their accumulation in fish or seals remains largely unknown. We analyzed concentration data from 42 studies collected between 1985 and 2019 in water, sediment, fish, and seals of Lake Baikal. Heavy metals had the highest concentrations in water and biota followed closely by polycyclic aromatic hydrocarbons (PAHs) and organochlorines. Among organochlorines, polychlorinated biphenyls (PCBs) showed the highest levels in water, surpassing hexachlorocyclohexane (HCH) concentrations, particularly after normalizing to solubility. While naphthalene and phenanthrene exhibited the highest average concentrations among polycyclic aromatic hydrocarbons (PAHs), their relative concentrations significantly decreased upon solubility normalization. The analysis confirmed that bioconcentration and biomagnification of organochlorine pesticides, PCBs, PAHs, and heavy metals depend primarily on source strength to drive their concentration in water and secondarily on their chemical characteristics as evidenced by the higher concentrations of low-solubility PCBs and high molecular weight PAHs in water and sediment. The differential biomagnification patterns of Cu, Hg, and Zn compared to Pb are attributed to their distinct sources and bioavailability, with Cu, Hg, and Zn showing more pronounced biomagnification due to prolonged industrial release, in contrast to the declining Pb levels. Dibenzo-p-dioxins were detected in sediment and seals, but not in water or fish compartments. These data highlight the importance of addressing even low concentrations of organic and inorganic pollutants and the need for more consistent and frequent monitoring to ensure the future usability of this and other similar essential natural resources.


Assuntos
Monitoramento Ambiental , Lagos , Metais Pesados , Poluentes Orgânicos Persistentes , Poluentes Químicos da Água , Lagos/química , Poluentes Químicos da Água/análise , Metais Pesados/análise , Poluentes Orgânicos Persistentes/metabolismo , Animais , Peixes/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Bioacumulação , Sibéria , Caniformia , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
2.
Acc Chem Res ; 52(4): 876-885, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30901193

RESUMO

Increasing pollution of global water sources and challenges in rapid detection and treatment of the wide range of contaminants pose considerable burdens on public health. The issue is particularly critical in rural areas, where building of centralized water treatment systems and pipe infrastructure to connect dispersed populations is not always practical. Point-of-use (POU) water supply systems provide cost-effective and energy-efficient approaches to store, treat, and monitor the quality of water. Currently available POU systems have limited success in dealing with the portfolio of emerging contaminants, particularly those present at trace concentrations. A site-to-site variation in contaminant species and concentrations also requires versatile POU systems to detect and treat contaminants and provide on-demand clean water. Among different technologies for developing rapid and sensitive water purification processes and sensors, enzymes offer one of the potential solutions because of their strong activity and selectivity toward chemical substrates. Many enzyme-nanomaterial composites have recently been developed that enhance enzymes' stability and activity and expand their functionality, thus facilitating the application of nanosupported enzymes in advanced POU systems. In this Account, we highlight the strengths and limitations of nanosupported enzymes for their potential applications in POU systems for water treatment as well as detection of contaminants, even at trace levels. We first summarize the mechanisms by which silica, carbon, and metallic nanosupports improve enzyme stability, selectivity, and catalysis. The unique immobilization properties and potential advantages of novel bioderived nanosupports over non-bioderived nanomaterials are emphasized. We illustrate prospective applications of nanosupported enzymes in POU systems with different roles: water purification, disinfection, and contaminant sensing. For each type of application, nanosupported enzymes offer higher performance than free enzymes. Nanosupports prolong enzymes' lifetimes and improve the rates of contaminant removal by concentrating contaminants near the enzymes. Nanosupports also stabilize antimicrobial enzymes while facilitating their attachment to bacterial surfaces, thereby increasing their potential uses for disinfection and prevention of biofouling in water purification and storage devices. As enzyme-based electrochemical sensors rely on electrochemical reactions of enzymatically generated species, the ability of conductive nanosupports to enhance enzyme activity and stability and to promote transfer of electrons onto the electrode greatly improves the sensitivity and durability of electroenzymatic contaminant sensors. Despite the promising results in laboratory settings, the application of nanosupported enzymes in real-world POU systems requires the implementation of multiple enzyme combinations and strategies for minimizing health risks associated with unintended releases of nanomaterials. Finally, we identify multidisciplinary research gaps in the development of nanosupported enzyme treatment systems and provide frameworks for the early adopters to make informed decisions on whether and how to use such POU systems.


Assuntos
Enzimas Imobilizadas/metabolismo , Nanoestruturas/química , Purificação da Água/métodos , Incrustação Biológica/prevenção & controle , Monitoramento Ambiental , Enzimas Imobilizadas/química , Grafite/química , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Estruturas Metalorgânicas/química , Dióxido de Silício/química , Abastecimento de Água/métodos
3.
Environ Sci Technol ; 53(24): 14538-14547, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31661950

RESUMO

The use of bioaugmented zeolite (bio-zeolite) can be an effective technology for irreversibly removing recalcitrant organic pollutants in aqueous mixtures. Removal of 1,4-dioxane by a bio-zeolite (Pseudonocardia dioxanivorans CB1190-bioaugmented ZSM-5) in the presence of several chlorinated volatile organic compounds (CVOCs) was superior to removal by adsorption using abiotic zeolite. Mixtures containing 1,1-dichloroethene (1,1-DCE) were an exception, which completely inhibited the bio-zeolite system. Specific adsorption characteristics were studied using adsorption isotherms in single-solute and bisolute systems accompanied by Polanyi theory-based Dubinin-Astakhov (DA) modeling. Adsorption behavior was examined using characteristic energy (Ea/H) from modified DA models and molecular dynamics simulations. While the tight-fit of 1,4-dioxane in the hydrophobic channels of ZSM-5 appears to drive 1,4-dioxane adsorption, the greater hydrophobicity of trichloroethene and cis-1,2-dichloroethene cause them have a greater affinity over 1,4-dioxane for adsorption sites on the zeolite. 1,4-Dioxane was desorbed and displaced by CVOCs except 1,1-DCE because of its low Ea/H value, explaining why bio-zeolite only biodegraded 1,4-dioxane in 1,1-DCE-free CVOC mixtures. Understanding the adsorption mechanisms of solutes in complex mixtures is crucial for the implementation of sorption-based treatment technologies for the removal of complex contaminant mixtures from aquatic environments.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Zeolitas , Adsorção , Dioxanos , Simulação de Dinâmica Molecular , Solventes
4.
Biotechnol Bioeng ; 115(12): 2941-2950, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30171681

RESUMO

Vault particles are the largest naturally occurring ribonucleoprotein complexes found in the cytoplasm. In all 78 copies of major vault protein (MVP) assemble on polyribosome templates, forming recombinant vault particles, which are of great interest as encapsulation carriers for therapeutics delivery and enzyme stabilization. Baculovirus-insect cell expression is the only system that has been developed for recombinant vault synthesis, but it has low scalability and slow production rate. In this study, we demonstrated the first use of yeast cells for the production of vault particles with full integrity and functionality solely by expressing the complementary DNA (cDNA) encoding MVP. Vaults synthesized in Pichia pastoris yeast cells are morphologically indistinguishable from recombinant vault particles produced in insect cells, and are able to package and stabilize enzymes resulting in improved longevity and catalytic efficiency. Thus, our results imply that the yeast system is an economical alternative to insect cells for the production of recombinant vaults. The consistency of vault morphology between yeast and insect cell systems also underlines that polyribosome templating may be conserved among eukaryotes, which promises the synthesis and assembly of recombinant human vault particles in other eukaryotic organisms.


Assuntos
Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Animais , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Saccharomyces cerevisiae/genética , Partículas de Ribonucleoproteínas em Forma de Abóbada/química , Partículas de Ribonucleoproteínas em Forma de Abóbada/genética , Partículas de Ribonucleoproteínas em Forma de Abóbada/isolamento & purificação
5.
Environ Sci Technol ; 51(21): 12619-12629, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29023103

RESUMO

Biodegradation of the persistent groundwater contaminant 1,4-dioxane is often hindered by the absence of dissolved oxygen and the co-occurrence of inhibiting chlorinated solvents. Using flow-through electrolytic reactors equipped with Ti/IrO2-Ta2O5 mesh electrodes, we show that combining electrochemical oxidation with aerobic biodegradation produces an overadditive treatment effect for degrading 1,4-dioxane. In reactors bioaugmented by Pseudonocardia dioxanivorans CB1190 with 3.0 V applied, 1,4-dioxane was oxidized 2.5 times faster than in bioaugmented control reactors without an applied potential, and 12 times faster than by abiotic electrolysis only. Quantitative polymerase chain reaction analyses of CB1190 abundance, oxidation-reduction potential, and dissolved oxygen measurements indicated that microbial growth was promoted by anodic oxygen-generating reactions. At a higher potential of 8.0 V, however, the cell abundance near the anode was diminished, likely due to unfavorable pH and/or redox conditions. When coupled to electrolysis, biodegradation of 1,4-dioxane was sustained even in the presence of the common co-contaminant trichloroethene in the influent. Our findings demonstrate that combining electrolytic treatment with aerobic biodegradation may be a promising synergistic approach for the treatment of mixed contaminants.


Assuntos
Biodegradação Ambiental , Dioxanos , Água Subterrânea , Oxirredução , Solventes , Poluentes Químicos da Água
6.
J Environ Manage ; 204(Pt 2): 765-774, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28625566

RESUMO

1,4-Dioxane is a contaminant of emerging concern that has been found widespread in groundwater, surface water, and drinking water environments. Many states are implementing lower regulatory advisory levels based on the toxicological profile of 1,4-dioxane and the potential public health risks. However, the unique chemical properties of 1,4-dioxane, such as high water solubility, low Henry's law constant, and importantly, the co-occurrence with chlorinated solvents and other contaminants, increase the challenges to efficiently cleanup 1,4-dioxane. This review summarizes currently available chemical and physical 1,4-dioxane treatment technologies and focuses on recent advances in bioremediation and monitoring tools. We also include laboratory studies and field applications to propose the next steps in 1,4-dioxane bioremediation research. It is important to provide useful references to change the industrial and regulatory perception of 1,4-dioxane biodegradability, to understand treatment mechanisms especially in contaminant mixtures, and to direct research for meeting practical needs.


Assuntos
Biodegradação Ambiental , Dioxanos , Água Subterrânea , Poluentes Químicos da Água
7.
Environ Sci Technol ; 50(17): 9599-607, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27486928

RESUMO

This study investigated the impacts of individual chlorinated solvents and their mixtures on aerobic 1,4-dioxane biodegradation by Pseudonocardia dioxanivorans CB1190. The established association of these co-occurring compounds suggests important considerations for their respective biodegradation processes. Our kinetics and mechanistic studies demonstrated that individual solvents inhibited biodegradation of 1,4-dioxane in the following order: 1,1-dichloroethene (1,1-DCE) > cis-1,2-diochloroethene (cDCE) > trichloroethene (TCE) > 1,1,1-trichloroethane (TCA). The presence of 5 mg L(-1) 1,1-DCE completely inhibited 1,4-dioxane biodegradation. Subsequently, we determined that 1,1-DCE was the strongest inhibitor of 1,4-dioxane biodegradation by bacterial pure cultures exposed to chlorinated solvent mixtures as well as in environmental samples collected from a site contaminated with chlorinated solvents and 1,4-dioxane. Inhibition of 1,4-dioxane biodegradation rates by chlorinated solvents was attributed to delayed ATP production and down-regulation of both 1,4-dioxane monooxygenase (dxmB) and aldehyde dehydrogenase (aldH) genes. Moreover, increasing concentrations of 1,1-DCE and cis-1,2-DCE to 50 mg L(-1) respectively increased 5.0-fold and 3.5-fold the expression of the uspA gene encoding a universal stress protein. In situ natural attenuation or enhanced biodegradation of 1,4-dioxane is being considered for contaminated groundwater and industrial wastewater, so these results will have implications for selecting 1,4-dioxane bioremediation strategies at sites where chlorinated solvents are present as co-contaminants.


Assuntos
Biodegradação Ambiental , Poluentes Químicos da Água , Água Subterrânea , Cinética , Solventes , Tricloroetileno
8.
Environ Sci Technol ; 49(11): 6510-8, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25970261

RESUMO

There is a critical need to develop appropriate management strategies for 1,4-dioxane (dioxane) due to its widespread occurrence and perceived recalcitrance at groundwater sites where chlorinated solvents are present. A comprehensive evaluation of California state (GeoTracker) and Air Force monitoring records was used to provide significant evidence of dioxane attenuation at field sites. Temporal changes in the site-wide maximum concentrations were used to estimate source attenuation rates at the GeoTracker sites (median length of monitoring period = 6.8 years). While attenuation could not be established at all sites, statistically significant positive attenuation rates were confirmed at 22 sites. At sites where dioxane and chlorinated solvents were present, the median value of all statistically significant dioxane source attenuation rates (equivalent half-life = 31 months; n = 34) was lower than 1,1,1-trichloroethane (TCA) but similar to 1,1-dichloroethene (1,1-DCE) and trichloroethene (TCE). Dioxane attenuation rates were positively correlated with rates for 1,1-DCE and TCE but not TCA. At this set of sites, there was little evidence that chlorinated solvent remedial efforts (e.g., chemical oxidation, enhanced bioremediation) impacted dioxane attenuation. Attenuation rates based on well-specific records from the Air Force data set confirmed significant dioxane attenuation (131 out of 441 wells) at a similar frequency and extent (median equivalent half-life = 48 months) as observed at the California sites. Linear discriminant analysis established a positive correlation between dioxane attenuation and increasing concentrations of dissolved oxygen, while the same analysis found a negative correlation with metals and CVOC concentrations. The magnitude and prevalence of dioxane attenuation documented here suggest that natural attenuation may be used to manage some but not necessarily all dioxane-impacted sites.


Assuntos
Dioxanos/análise , Água Subterrânea/química , Halogenação , Solventes/química , Poluentes Químicos da Água/análise , California , Dicloroetilenos/análise , Dioxanos/química , Análise Discriminante , Meia-Vida , Cinética , Tricloroetanos/análise , Tricloroetileno/análise
9.
Appl Environ Microbiol ; 80(10): 3209-18, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24632253

RESUMO

Bacterial multicomponent monooxygenase gene targets in Pseudonocardia dioxanivorans CB1190 were evaluated for their use as biomarkers to identify the potential for 1,4-dioxane biodegradation in pure cultures and environmental samples. Our studies using laboratory pure cultures and industrial activated sludge samples suggest that the presence of genes associated with dioxane monooxygenase, propane monooxygenase, alcohol dehydrogenase, and aldehyde dehydrogenase are promising indicators of 1,4-dioxane biotransformation; however, gene abundance was insufficient to predict actual biodegradation. A time course gene expression analysis of dioxane and propane monooxygenases in Pseudonocardia dioxanivorans CB1190 and mixed communities in wastewater samples revealed important associations with the rates of 1,4-dioxane removal. In addition, transcripts of alcohol dehydrogenase and aldehyde dehydrogenase genes were upregulated during biodegradation, although only the aldehyde dehydrogenase was significantly correlated with 1,4-dioxane concentrations. Expression of the propane monooxygenase demonstrated a time-dependent relationship with 1,4-dioxane biodegradation in P. dioxanivorans CB1190, with increased expression occurring after over 50% of the 1,4-dioxane had been removed. While the fraction of P. dioxanivorans CB1190-like bacteria among the total bacterial population significantly increased with decrease in 1,4-dioxane concentrations in wastewater treatment samples undergoing active biodegradation, the abundance and expression of monooxygenase-based biomarkers were better predictors of 1,4-dioxane degradation than taxonomic 16S rRNA genes. This study illustrates that specific bacterial monooxygenase and dehydrogenase gene targets together can serve as effective biomarkers for 1,4-dioxane biodegradation in the environment.


Assuntos
Actinomycetales/genética , Actinomycetales/metabolismo , Proteínas de Bactérias/genética , Dioxanos/metabolismo , Esgotos/microbiologia , Águas Residuárias/microbiologia , Actinomycetales/enzimologia , Actinomycetales/isolamento & purificação , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Proteínas de Bactérias/metabolismo , Biotransformação , Marcadores Genéticos
10.
Environ Sci Technol ; 48(7): 4012-20, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24593855

RESUMO

Biotransformation of 6:2 FTOH [F(CF2)6CH2CH2OH] by the white-rot fungus, Phanerochaete chrysosporium, was investigated in laboratory studies. 6:2 FTOH is a raw material increasingly being used to replace products that can lead to long-chain perfluoroalkyl carboxylic acids (PFCAs, ≥ 8 carbons). During a product's life cycle and after final disposal, 6:2 FTOH-derived compounds may be released into the environment and potentially biotransformed. In this study, P. chrysosporium transformed 6:2 FTOH to perfluorocarboxylic acids (PFCAs), polyfluorocarboxylic acids, and transient intermediates within 28 days. 5:3 Acid [F(CF2)5CH2CH2COOH] was the most abundant transformation product, accounting for 32-43 mol % of initially applied 6:2 FTOH in cultures supplemented with lignocellulosic powder, yeast extract, cellulose, and glucose. PFCAs, including perfluoropentanoic (PFPeA) and perfluorohexanoic (PFHxA) acids, accounted for 5.9 mol % after 28-day incubation. Furthermore, four new transformation products as 6:2 FTOH conjugates or 5:3 acid analogues were structurally confirmed. These results demonstrate that P. chrysosporium has the necessary biochemical mechanisms to drive 6:2 FTOH biotransformation pathways toward more degradable polyfluoroalkylcarboxylic acids, such as 5:3 acid, with lower PFCA yields compared to aerobic soil, sludge, and microbial consortia. Since bacteria and fungi appear to contribute differently toward the environmental loading of FTOH-derived PFCAs and polyfluorocarboxylic acids, wood-rotting fungi should be evaluated as potential candidates for the bioremediation of wastewater and groundwater contaminated with fluoroalkyl substances.


Assuntos
Hidrocarbonetos Fluorados/metabolismo , Phanerochaete/metabolismo , Madeira/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Biotransformação , Ácidos Carboxílicos/metabolismo , Hidrocarbonetos Fluorados/química , Espectrometria de Massas , Padrões de Referência
11.
ACS Appl Mater Interfaces ; 16(8): 10845-10855, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38357900

RESUMO

This study set out to uncover which interfacial properties have the greatest impact on membrane organic fouling, biofouling, and fouling resistance. A relatively simple manipulation of the basic equations used in determining Lifshitz-van der Waals (LW) and Lewis acid-base (AB) surface tensions for solid materials reveals that the high electron accepticity of water makes the electron donicity of membrane and biofouling materials the key component governing their interfacial free energy of adhesion (ΔG132), which defines the favorability (or unfavorability) of one material (1) adhering to another (2) when immersed in a liquid (3). Various biofoulant and membrane LW and AB surface tensions were systematically characterized. Static bacterial adhesion, alginic acid filtration, and wastewater filtration tests were conducted to determine the fouling propensities of three different polymeric membrane materials. Experimental results of microbial adhesion, alginate fouling, and biofouling tests all correlated well with membrane electron density, where higher electron density produced less organic fouling or biofouling. These combined theoretical and experimental results confirm the importance of surface electron donicity in determining the fouling propensity of polymeric membranes.

12.
Bioresour Technol ; 390: 129897, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863333

RESUMO

Manganese peroxidase (MnP) offers significant potential in various environmental and industrial applications; however, its reliance on Mn2+ ions for electron shuttling limits its use in Mn2+-deficient systems. Herein, a novel approach is presented to address this limitation by co-immobilizing MnP and Mn2+ in silica gels. These gels were synthesized following the standard sol-gel method and found to effectively immobilize Mn2+ ions, primarily through electrostatic interactions. The MnP co-immobilized with Mn2+ ions in the silica gel exhibited 4-5 times higher activity than the MnP immobilized alone in activity assays, and generated Mn3+ within the gel, indicating the immobilized Mn2+ ions remain capable of shuttling electrons to the co-immobilized MnP. In decolorization tests with two organic dyes, the co-immobilized system also outperformed the MnP immobilized without Mn2+ ions, resulting in 2-4 times higher dye removals. This study will enable a broader application of MnP enzymes in sustainable environmental remediation and industrial catalysis.


Assuntos
Enzimas Imobilizadas , Manganês , Peroxidases , Catálise , Géis
13.
Chemosphere ; 313: 137628, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565767

RESUMO

The influence of growth medium water chemistry, specifically carbon/nitrogen (C/N) molar ratios, on the characteristics and development of biofilms of the model microorganism Pseudomonas aeruginosa was investigated. C/N = 9 had a unique effect on biofilm composition as well as quorum sensing (QS) pathways, with higher concentrations of carbohydrates and proteins in the biofilm and a significant upregulation of the QS gene lasI in planktonic cells. The effect of C/N ratio on total attached biomass was negligible. Principal component analysis revealed a different behavior of most outputs such as carbohydrates and QS chemicals at C/N = 9, and pointed to correlations between parameters of biofilm formation and steady state distribution of cells and extracellular components. C/N ratio was also shown to influence organic compound utilization by both planktonic and sessile organisms, with a maximum chemical oxygen demand (COD) removal of 83% achieved by biofilms at C/N = 21. Planktonic cells achieved higher COD removal rates, but greater overall rates after six days occurred in biofilms. The development of a dual-species biofilm of P. aeruginosa and Nitrobacter winogradskyi was also influenced by C/N, with increase in the relative abundance of the slower-growing N. winogradskyi above C/N = 9. These results indicate that altering operational parameters related to C/N would be relevant for mitigating or promoting biofilm formation and function depending on the desired industrial application or treatment configuration.


Assuntos
Carbono , Nitrogênio , Carbono/metabolismo , Nitrogênio/farmacologia , Biofilmes , Percepção de Quorum , Carboidratos , Pseudomonas aeruginosa
14.
J Hazard Mater ; 450: 131007, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871371

RESUMO

Six-carbon-chained polyfluoroalkyl substances, such as 6:2 fluorotelomer alcohol (6:2 FTOH), are being used to replace longer chained compounds in the manufacture of various commercial products. This study examined the effects of growth substrates and nutrients on specific intracellular and extracellular enzymes mediating 6:2 FTOH aerobic biotransformation by the white-rot fungus, Phanerochaete chrysosporium. Cellulolytic conditions with limited glucose were a suitable composition, resulting in high 5:3 FTCA yield (37 mol%), which is a key intermediate in 6:2 FTOH degradation without forming significant amounts of terminal perfluorocarboxylic acids (PFCAs). Sulfate and ethylenediaminetetraacetic acid (EDTA) were also essential for 5:3 FTCA production, but, at lower levels, resulted in the buildup of 5:2 sFTOH (52 mol%) and 6:2 FTUCA (20 mol%), respectively. In non-ligninolytic nutrient-rich medium, 45 mol% 6:2 FTOH was transformed but produced only 12.7 mol% 5:3 FTCA. Enzyme activity studies imply that cellulolytic conditions induce the intracellular cytochrome P450 system. In contrast, extracellular peroxidase synthesis is independent of 6:2 FTOH exposure. Gene expression studies further verified that peroxidases were relevant in catalyzing the downstream transformations from 5:3 FTCA. Collectively, the identification of nutrients and enzymatic systems will help elucidate underlying mechanisms and biogeochemical conditions favorable for fungal transformation of PFCA precursors in the environment.


Assuntos
Fluorocarbonos , Phanerochaete , Fluorocarbonos/metabolismo , Biotransformação , Óxidos de Enxofre , Phanerochaete/metabolismo
15.
Water Res X ; 19: 100181, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37215311

RESUMO

The synthetic dye discharge is responsible for nearly one-fifth of the total water pollution from textile industry, which poses both environmental and public health risks. Herein, a solid substrate inoculated with fungi is proposed as an effective and environmentally friendly approach for catalyzing organic dye degradation. Pleurotus ostreatus was inoculated onto commercially available solid substrates such as sorghum, bran, and husk. Among these, P. ostreatus grown on sorghum (PO-SORG) produced the highest enzyme activity and was further tested for its dye biodegradation ability. Four dye compounds, Reactive Blue 19 (RB-19), Indigo Carmine, Acid Orange 7, and Acid Red 1 were degraded by PO-SORG with removal efficiencies of 93%, 95%, 95%, and 78%, respectively. Under more industrially relevant conditions, PO-SORG successfully degraded dyes in synthetic wastewater and in samples collected from a local textile factory, which reveals its potential for practical usage. Various biotransformation intermediates and end-products were identified for each dye. PO-SORG exhibited high stability even under relatively extreme temperatures and pH conditions. Over 85% removal of RB-19 was achieved after three consecutive batch cycles, demonstrating reusability of this approach. Altogether, PO-SORG demonstrated outstanding reusability and sustainability and offers considerable potential for treating wastewater streams containing synthetic organic dyes.

16.
J Environ Monit ; 14(9): 2317-26, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22825917

RESUMO

An intrinsic biodegradation study involving the design and implementation of innovative environmental diagnostic tools was conducted to evaluate whether monitored natural attenuation (MNA) could be considered as part of the remedial strategy to treat an aerobic aquifer contaminated with 1,4-dioxane and trichloroethene (TCE). In this study, advanced molecular biological and stable isotopic tools were applied to confirm in situ intrinsic biodegradation of 1,4-dioxane and TCE. Analyses of Bio-Trap® samplers and groundwater samples collected from monitoring wells verified the abundance of bacteria and enzymes capable of aerobically degrading TCE and 1,4-dioxane. Furthermore, phospholipid fatty acid analysis with stable isotope probes (PLFA-SIP) of the microbial community validated the ability for microbial degradation of TCE and 1,4-dioxane. Compound specific isotope analysis (CSIA) of groundwater samples for TCE resulted in δ(13)C values that indicated likely biodegradation of TCE in three of the four monitoring wells sampled. Results of the MNA evaluation showed that enzymes capable of aerobically degrading TCE and 1,4-dioxane were present, abundant, and active in the aquifer. Taken together, these results provide direct evidence of the occurrence of TCE and 1,4-dioxane biodegradation at the study site, supporting the selection of MNA as part of the final remedy at some point in the future.


Assuntos
Dioxanos/análise , Monitoramento Ambiental/métodos , Água Subterrânea/química , Tricloroetileno/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Água Subterrânea/microbiologia , Microbiologia da Água
17.
Biotechnol Adv ; 57: 107936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35276253

RESUMO

Microbial enzymes catalyze various reactions inside and outside living cells. Among the widely studied enzymes, fungal enzymes have been used for some of the most diverse purposes, especially in bioremediation, biosynthesis, and many nature-inspired commercial applications. To improve their stability and catalytic ability, fungal enzymes are often immobilized on assorted materials, conventional as well as nanoscale. Recent advances in fungal enzyme immobilization provide effective and sustainable approaches to achieve improved environmental and commercial outcomes. This review aims to provide a comprehensive overview of commonly studied fungal enzymes and immobilization technologies. It also summarizes recent advances involving immobilized fungal enzymes for the degradation or assembly of compounds used in the manufacture of products, such as detergents, food additives, and fossil fuel alternatives. Furthermore, challenges and future directions are highlighted to offer new perspectives on improving existing technologies and addressing unexplored fields of applications.


Assuntos
Enzimas Imobilizadas , Biocatálise , Biodegradação Ambiental , Enzimas Imobilizadas/metabolismo
18.
Sci Total Environ ; 823: 153570, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121038

RESUMO

The application of urban wastewater treatment plants (WWTPs) products to agricultural lands has contributed to the rising level of antibiotic resistance and drawn a critical public health concern. It has not been thoroughly investigated at which spatial scales a biosolid applied area as a potentially predominant source affects surrounding soil resistomes. This study investigated distribution and impact of WWTP biosolids treated with anaerobic digestion on an agricultural area. Heterotrophic plate counts (HPCs) and quantitative polymerase chain reaction (qPCR) were performed for detection of selected antibiotic-resistant bacteria (ARB), selected antibiotic resistance genes (ARGs), intI1 genes, and 16S rRNA genes. Biosolid samples contained significantly higher levels of selected ARGs than the raw agricultural soils (p < 0.05). The average relative abundances of intI1, sul1, blaSHV, and ermB genes were significantly higher in biosolid-amended soils than nearby agricultural soils (p < 0.05). Spatial interpolation analysis of relative gene abundances of intI1, sul1, sul2, and tetW across the studied area further indicated directional trends towards the northwest and southeast directions, highlighting possible airborne spread. Concentrations of Co, Cu, Ni, and Fe were found to be significantly and positively correlated with relative abundances of intI1, sul1, and tetW genes (p < 0.05). The resistance ratios of culturable antibiotic-resistant bacteria in agricultural soils with biosolid amendments were generally identical to those without biosolid amendments. This study will advance the understanding of the antibiotic resistome in agricultural soils impacted by long-term waste reuse and inform the evaluation strategies for future biosolids application and management.


Assuntos
Antagonistas de Receptores de Angiotensina , Genes Bacterianos , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Biossólidos , Resistência Microbiana a Medicamentos/genética , RNA Ribossômico 16S , Solo , Águas Residuárias/microbiologia
19.
Bioresour Technol ; 351: 127040, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35318145

RESUMO

This study presents an eco-friendly and efficient technology, using immobilized enzymes, vault-encapsulated laccases (vlaccase), for decolorization and detoxification of dyes. Vault encapsulation remarkably improved the performance of laccase at industrially relevant conditions, including neutral to alkaline pH and relatively high temperatures. Two representative anthraquinone and azo dyes, Reactive Blue 19 and Acid Orange 7, respectively, were rapidly decolorized (72% and 80%) by vlaccase treatment while natural laccase (nlaccase) achieved 40% and 32% decolorization. The toxicity of treated and untreated dyes was tested on model bacterial, algal, and insect cells. The inhibitory effects of dyes towards selected bacteria were reduced in vlaccase-treated samples. The chlorophyll synthesis in algae was less inhibited by dyes after vlaccase treatment. Furthermore, the toxicity of dye degradation products to insect cells was significantly mitigated in the vlaccase group. Collectively, these results indicate that vlaccase is a stable and strong enzymatic system for removing dyes from waters.


Assuntos
Lacase , Nanopartículas , Compostos Azo/química , Compostos Azo/toxicidade , Biodegradação Ambiental , Corantes/química , Enzimas Imobilizadas , Lacase/metabolismo
20.
Environ Pollut ; 294: 118603, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861330

RESUMO

Granular activated carbon (GAC) has been used to remove per- and polyfluoroalkyl substances (PFASs) from industrial or AFFF-impacted waters, but its effectiveness can be low because adsorption of short-chained PFASs is ineffective and its sites are exhausted rapidly by co-contaminants. To increase adsorption of anionic PFASs on GAC by electrostatic attractions, we modified GAC's surface with the cationic polymer poly diallyldimethylammonium chloride (polyDADMAC) and tested its capacity in complex water matrices containing dissolved salts and humic acid. Amending with concentrations of polyDADMAC as low as 0.00025% enhanced GAC's adsorption capacity for PFASs, even in the presence of competing ions. This suggests that electrostatic interactions with polyDADMAC's quaternary ammonium functional groups helped bind organic and inorganic ions as well as the headgroup of short-chain PFASs, allowing more overall PFAS removal by GAC. Evaluating the effect of polymer dose is important because excessive addition can block pores and reduce overall PFAS removal rather than increase it. To decrease the waste associated with this adsorption strategy by making the adsorbent viable for more than one saturation cycle, a regeneration method is proposed which uses low-power ultrasound to enhance the desorption of PFASs from the polyDADMAC-GAC with minimum disruption to the adsorbent's structure. Re-modification with the polymer after sonication resulted in a negligible decrease in the sorbent's capacity over four saturation rounds. These results support consideration of polyDADMAC-modified GAC as an effective regenerable adsorbent for ex-situ concentration step of both short and long-chain PFASs from real waters with high concentrations of competing ions and low PFAS loads.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Fluorocarbonos/análise , Polímeros , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa