Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(5): 436, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589724

RESUMO

Wadi El-Natrun is one of the most observable geomorphological features in the North-Western Desert of Egypt; it contains several old saline and saline soda lakes. This study investigates physicochemical and biochemical characteristics and estimates the total phenolic content (TPC), total flavonoid content (TVC), and bioactivities of sediment, cyanobacteria, and brine shrimp (Artemia salina) in soda lakes, i.e., El-Hamra Lake 1 (H1) and El-Hamra Lake 2 (H2). These soda lakes are unique extreme ecosystems characterized by high pH (> 9.3), high alkalinity, and salinity. Some extremophilic microorganisms are hosted in this ecosystem. The results revealed that the chemical water type of studied lakes is soda-saline lakes according to the calculated percentage sequence of major cations and anions. Sodium ranked first among major cations with an abundance ratio of e% 58, while chloride came first among anions with an abundance ratio of e% 71, and bicarbonate and carbonate occupied the last rank with an abundance of 6%. The biochemical investigations showed that TPC and TVC are present in concern contents of sediment, cyanobacteria, and brine shrimp (A. salina) which contribute 89% of antioxidant capacity and antimicrobial activities. Thus, this study helps better understand the chemical and biochemical adaptations in soda lake ecosystems and explores natural sources with potential applications in antioxidant-rich products and environmental conservation efforts.


Assuntos
Ecossistema , Lagos , Lagos/química , Egito , Antioxidantes , Monitoramento Ambiental/métodos , Ânions , Cátions
2.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163268

RESUMO

Obesity has become a global epidemic that has a negative impact on population health and the economy of nations. Genetic predispositions have been demonstrated to have a substantial role in the unbalanced energy metabolism seen in obesity. However, these genetic variations cannot entirely explain the massive growth in obesity over the last few decades. Accumulating evidence suggests that modern lifestyle characteristics such as the intake of energy-dense foods, adopting sedentary behavior, or exposure to environmental factors such as industrial endocrine disruptors all contribute to the rising obesity epidemic. Recent advances in the study of DNA and its alterations have considerably increased our understanding of the function of epigenetics in regulating energy metabolism and expenditure in obesity and metabolic diseases. These epigenetic modifications influence how DNA is transcribed without altering its sequence. They are dynamic, reflecting the interplay between the body and its surroundings. Notably, these epigenetic changes are reversible, making them appealing targets for therapeutic and corrective interventions. In this review, I discuss how these epigenetic modifications contribute to the disordered energy metabolism in obesity and to what degree lifestyle and weight reduction strategies and pharmacological drugs can restore energy balance by restoring normal epigenetic profiles.


Assuntos
Epigênese Genética/genética , Obesidade/genética , Obesidade/fisiopatologia , Metilação de DNA/genética , Dieta , Disruptores Endócrinos , Metabolismo Energético/genética , Epigenômica/métodos , Exercício Físico , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Histonas/genética , Humanos , Estilo de Vida , Doenças Metabólicas/genética , RNA não Traduzido/genética
3.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430854

RESUMO

Vitamin D (VD) deficiency is a hallmark of obesity and vascular dysfunction. We sought to test the hypothesis that VD deficiency may contribute to obesity-related vascular dysfunction by inducing adipokine hypomethylation and augmented expression. To this end, we collected blood and adipose tissues (ATs) from a cohort of 77 obese participants who were classified as having mild, moderate, or severe VD deficiency. The body composition, vascular reactivity, cardiometabolic profiles, and DNA methylation of 94 inflammation-related adipokines were measured. Our results show that higher degrees of VD deficiency were associated with lower DNA methylation and induced the expression of inflammatory adipokines such as B-cell lymphoma 6 (BCL6), C-X-C Motif Chemokine Ligand 8 (CXCL8), histone deacetylase 5 (HDAC5), interleukin 12A (IL12A), and nuclear factor κB (NFκB) in the ATs. They were also associated with higher BMI and total and visceral fat mass, impaired insulin sensitivity and lipid profiles, AT hypoxia, and higher concentrations of circulating inflammatory markers. Moderate and severe VD deficiency correlated with impaired vasoreactivity of the brachial artery and AT-isolated arterioles, reduced nitric oxide generation, and increased arterial stiffness. In a multivariate regression analysis, the VD deficiency level strongly predicted the adipokine methylation score, systemic inflammation, and microvascular dysfunction. In conclusion, our findings suggest that VD deficiency is a possible contributor to obesity-related adipokine hypomethylation, inflammation, and vascular dysfunction.


Assuntos
Metilação de DNA , Deficiência de Vitamina D , Humanos , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/genética , Deficiência de Vitamina D/metabolismo , Tecido Adiposo/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Inflamação/metabolismo , Adipocinas/metabolismo , DNA/metabolismo
4.
Fish Shellfish Immunol ; 108: 63-72, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33242597

RESUMO

The current trial investigated the roles of ß-carotene and phycocyanin extracted from Spirulina platensis on growth, serum biochemical, digestive enzymes, antioxidant defense, immune responses, and immune gene expression in Nile tilapia (Oreochromis niloticus). Fish (1.52 ± 0.10 g) were randomly stocked to three treatments with three replicates (12 fish per replicate) in nine aquaria (60 L glass aquarium for each), and reared for 70-days. Three tested diets were formulated to be isonitrogenous and isolipidic, and were offered for experimental fish until ad-libitum three times daily at 09:00 a.m., 11.00 a.m. and 3:00 p.m. The first diet (control) was without supplementation. About 50 mg ß-carotene and 50 mg phycocyanin kg-1 were supplemented to the other experimental diets, respectively. Results indicated that feed intake was not (P > 0.05) differ among experimental diets. Compared to control diet wight gain and specific growth rate were significantly (P < 0.05) in fish fed diet containing ß-carotene, while, the highest weight gain and the best FCR were detected in phycocyanin diet. Survival fish among treatments was significantly (P < 0.05) differ and the highest survival rate was showed in fish fed diet supplemented with phycocyanin. Either ß-carotene or phycocyanin significantly (P < 0.05) improved the intestinal digestive enzymes compared with control diet, where the highest values of chymotrypsin, trypsin, lipase and amylase were noticed in fish fed phycocyanin. Diets supplemented with ß-carotene and phycocyanin significantly (P < 0.05) improved hematology parameters contents compared with to the control diet, and the best contents were detected in fish fed diet supplemented with phycocyanin. The highest significant (P < 0.05) phagocytic, lysozyme, immunoglobulin M (IgM), superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and total antioxidant capacity (T-AOC) activities were recorded in diet supplemented with phycocyanin. The transcripts of interferon gamma and interleukin 1ß genes were (P < 0.05) up-regulated in the liver of fish fed diet supplemented with ß-carotene and phycocyanin, but expression of HSP70 gene down-regulated in fish fed ß-carotene and phycocyanin containing diet compared control. The highest gene expression of the interferon gamma and interleukin 1ß was observed in fish fed phycocyanin.


Assuntos
Ciclídeos/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Estresse Oxidativo/imunologia , Ficocianina/metabolismo , beta Caroteno/metabolismo , Ração Animal/análise , Animais , Biomarcadores/metabolismo , Análise Química do Sangue/veterinária , Ciclídeos/sangue , Ciclídeos/genética , Ciclídeos/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , Proteínas de Peixes/imunologia , Testes Hematológicos/veterinária , Intestinos/enzimologia , Ficocianina/administração & dosagem , Distribuição Aleatória , Spirulina/química , beta Caroteno/administração & dosagem
5.
Am J Physiol Heart Circ Physiol ; 316(3): H647-H663, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30632766

RESUMO

The glycocalyx is crucial for normal endothelial function. It also tethers extracellular superoxide dismutase (SOD3), which protects the endothelium against oxidative damage. Proteolytic enzymes [matrix metalloproteinases (MMPs)] are capable of disrupting endothelial cell surface proteins, such as syndecans, resulting in derangements of the endothelial glycocalyx. We sought to test the role of MMPs in oxidative stress-mediated disruption of the endothelial glycocalyx and examine the effect of pharmacological inhibition of MMPs on mitigating this detrimental effect. We also examined the role of histone deacetylase (HDAC) in the oxidative stress-mediated MMP induction and glycocalyx remodeling. Oxidative stress was experimentally induced in human adipose microvascular endothelial cells using H2O2 and buthionine sulfoximine in the presence and absence of potent MMP and HDAC inhibitors. H2O2 and buthionine sulfoximine resulted in a notable loss of the endothelial glycocalyx; they also increased the expression and proteolytic activity of MMP-2 and MMP-9 and subsequently increased the shedding of syndecan-1 and SOD3 from the endothelial cell surface. MMP upregulation was accompanied by a decline in mRNA and protein levels of their inhibitors, tissue inhibitors of metalloproteinase (TIMPs; TIMP-1 and TIMP-3). Furthermore, oxidative stress induced HDAC activity. Inhibition of MMPs and HDAC reversed syndecan-1 and SOD3 shedding and maintained endothelial glycocalyx integrity. HDAC inhibition increased TIMP expression and reduced MMP expression and activity in endothelial cells. Our findings shed light on MMPs and HDAC as therapeutically targetable mechanisms in oxidative stress-induced glycocalyx remodeling. NEW & NOTEWORTHY Oxidative stress, a hallmark of many diseases, damages the endothelial glycocalyx, resulting in vascular dysfunction. Studying the mechanistic link between oxidative stress and endothelial glycocalyx derangements might help discover new therapeutic targets to preserve vascular function. In this study, we investigated the involvement of matrix metalloproteinases and histone deacetylase in oxidative stress-induced endothelial glycocalyx degradation.


Assuntos
Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Glicocálix/metabolismo , Glicocálix/patologia , Histona Desacetilases/metabolismo , Metaloproteinases da Matriz/metabolismo , Estresse Oxidativo , Fenômenos Biomecânicos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/enzimologia , Glicocálix/enzimologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Sindecana-1/metabolismo
6.
Alcohol Clin Exp Res ; 42(2): 278-285, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29178290

RESUMO

BACKGROUND: Binge drinking is associated with increased risk for cardiovascular (CV) disease. MicroRNA-21 (miR21) is up-regulated in the setting of excessive alcohol consumption and CV disease. Therefore, the goal of this study was to examine the vasodilatory responses to flow and acetylcholine (ACh) in the absence and presence of an anti-miR21 inhibitor in the microcirculation of young adult repeated binge drinkers (BDs). METHODS: Gluteal subcutaneous adipose tissue biopsies were obtained from young adults (18 to 30 years, n = 35 vessels from BDs and n = 28 vessels from abstainers). Resistance arteries (RAs) were isolated, incubated with anti-miR21 or a negative control (NC) to miR21 (12 hours; 50 nM), and lumen diameters measured with video microscopy. miR21 of adipose tissues was determined by quantitative polymerase chain reaction. RESULTS: Flow-induced dilation and ACh-induced dilation (AChID) were reduced in BDs as compared to abstainers. The miR21 inhibitor but not the NC abrogated these effects in BDs, but did not affect vasodilation in abstainers. Nitric oxide synthase inhibition with L-NAME reduced vasodilation in abstainers but not in BDs. In BDs, vasodilation was reduced by L-NAME in the presence of anti-miR21 but not the NC. Scavenging the reactive oxygen species, hydrogen peroxide with polyethylene glycol catalase reduced dilation in BDs but did not affect the restored dilation by the miR21 inhibitor. Maximum dilation to papaverine (endothelium independent) was similar between groups and unaffected by pharmacological inhibition. Finally, vascular endogenous miR21 was increased in BDs compared to abstainers. CONCLUSIONS: Endogenous miR21 is increased in RAs of young BDs, leading to reduced flow and AChID in the microcirculation.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , MicroRNAs/antagonistas & inibidores , Microcirculação/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Acetilcolina/farmacologia , Adolescente , Adulto , Estudos de Casos e Controles , Catalase/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Peróxido de Hidrogênio , Masculino , MicroRNAs/metabolismo , Microcirculação/fisiologia , Microscopia de Vídeo , Microvasos/fisiopatologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Polietilenoglicóis/farmacologia , Gordura Subcutânea/irrigação sanguínea , Gordura Subcutânea/metabolismo , Vasodilatação/fisiologia , Vasodilatadores/farmacologia , Adulto Jovem
7.
Exerc Sport Sci Rev ; 46(1): 48-55, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28816705

RESUMO

Endothelium-dependent vasodilation is reduced after acute exercise or after high intraluminal pressure in isolated arterioles from sedentary adults but not in arterioles from regular exercisers. The preserved vasodilation in arterioles from exercisers is hydrogen peroxide (H2O2) dependent, whereas resting dilation is nitric oxide (NO) dependent. We hypothesize chronic exercise elicits adaptations allowing for maintained vasodilation when NO bioavailability is reduced.


Assuntos
Endotélio Vascular/fisiologia , Exercício Físico/fisiologia , Microcirculação/fisiologia , Vasodilatação/fisiologia , Adaptação Fisiológica , Doenças Cardiovasculares/fisiopatologia , Humanos , Peróxido de Hidrogênio , Óxido Nítrico/fisiologia , Comportamento Sedentário
8.
Am J Physiol Heart Circ Physiol ; 312(5): H896-H906, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235790

RESUMO

High blood pressure has been shown to elicit impaired dilation in the vasculature. The purpose of this investigation was to elucidate the mechanisms through which high pressure may elicit vascular dysfunction and determine the mechanisms through which regular aerobic exercise protects arteries against high pressure. Male C57BL/6J mice were subjected to 2 wk of voluntary running (~6 km/day) for comparison with sedentary controls. Hindlimb adipose resistance arteries were dissected from mice for measurements of flow-induced dilation (FID; with or without high intraluminal pressure exposure) or protein expression of NADPH oxidase II (NOX II) and superoxide dismutase (SOD). Microvascular endothelial cells were subjected to high physiological laminar shear stress (20 dyn/cm2) or static condition and treated with ANG II + pharmacological inhibitors. Cells were analyzed for the detection of ROS or collected for Western blot determination of NOX II and SOD. Resistance arteries from exercised mice demonstrated preserved FID after high pressure exposure, whereas FID was impaired in control mouse arteries. Inhibition of ANG II or NOX II restored impaired FID in control mouse arteries. High pressure increased superoxide levels in control mouse arteries but not in exercise mouse arteries, which exhibited greater ability to convert superoxide to H2O2 Arteries from exercised mice exhibited less NOX II protein expression, more SOD isoform expression, and less sensitivity to ANG II. Endothelial cells subjected to laminar shear stress exhibited less NOX II subunit expression. In conclusion, aerobic exercise prevents high pressure-induced vascular dysfunction through an improved redox environment in the adipose microvasculature.NEW & NOTEWORTHY We describe potential mechanisms contributing to aerobic exercise-conferred protection against high intravascular pressure. Subcutaneous adipose microvessels from exercise mice express less NADPH oxidase (NOX) II and more superoxide dismutase (SOD) and demonstrate less sensitivity to ANG II. In microvascular endothelial cells, shear stress reduced NOX II but did not influence SOD expression.


Assuntos
Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/fisiologia , Exercício Físico/fisiologia , Microvasos/fisiologia , Estresse Oxidativo/fisiologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Artérias/fisiologia , Pressão Sanguínea/fisiologia , Células Endoteliais/efeitos dos fármacos , Membro Posterior/irrigação sanguínea , Humanos , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/genética , Resistência Vascular
9.
Microcirculation ; 22(5): 327-47, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25904196

RESUMO

Insulin is a vasoactive hormone that regulates vascular homeostasis by maintaining balance of endothelial-derived NO and ET-1. Although there is general agreement that insulin resistance and the associated hyperinsulinemia disturb this balance, the vascular consequences for hyperinsulinemia in isolation from insulin resistance are still unclear. Presently, there is no simple answer for this question, especially in a background of mixed reports examining the effects of experimental hyperinsulinemia on endothelial-mediated vasodilation. Understanding the mechanisms by which hyperinsulinemia induces vascular dysfunction is essential in advancing treatment and prevention of insulin resistance-related vascular complications. Thus, we review literature addressing the effects of hyperinsulinemia on vascular function. Furthermore, we give special attention to the vasoregulatory effects of hyperinsulinemia on skeletal muscle, the largest insulin-dependent organ in the body. This review also characterizes the differential vascular effects of hyperinsulinemia on large conduit vessels versus small resistance microvessels and the effects of metabolic variables in an effort to unravel potential sources of discrepancies in the literature. At the cellular level, we provide an overview of insulin signaling events governing vascular tone. Finally, we hypothesize a role for hyperinsulinemia and insulin resistance in the development of CVD.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Insulina/metabolismo , Músculo Esquelético , Doenças Vasculares , Animais , Humanos , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Óxido Nítrico/metabolismo , Doenças Vasculares/metabolismo , Doenças Vasculares/fisiopatologia
10.
Am J Physiol Regul Integr Comp Physiol ; 309(8): R855-63, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26269521

RESUMO

The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m(-2)·min(-1))-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Insulina/farmacologia , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Pessoa de Meia-Idade , Complexos Multiproteicos/genética , Músculo Esquelético/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética
11.
BMC Cancer ; 15: 816, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26510686

RESUMO

BACKGROUND: Breast cancer formation is associated with frequent changes in DNA methylation but the extent of very early alterations in DNA methylation and the biological significance of cancer-associated epigenetic changes need further elucidation. METHODS: Pyrosequencing was done on bisulfite-treated DNA from formalin-fixed, paraffin-embedded sections containing invasive tumor and paired samples of histologically normal tissue adjacent to the cancers as well as control reduction mammoplasty samples from unaffected women. The DNA regions studied were promoters (BRCA1, CD44, ESR1, GSTM2, GSTP1, MAGEA1, MSI1, NFE2L3, RASSF1A, RUNX3, SIX3 and TFF1), far-upstream regions (EN1, PAX3, PITX2, and SGK1), introns (APC, EGFR, LHX2, RFX1 and SOX9) and the LINE-1 and satellite 2 DNA repeats. These choices were based upon previous literature or publicly available DNA methylome profiles. The percent methylation was averaged across neighboring CpG sites. RESULTS: Most of the assayed gene regions displayed hypermethylation in cancer vs. adjacent tissue but the TFF1 and MAGEA1 regions were significantly hypomethylated (p ≤0.001). Importantly, six of the 16 regions examined in a large collection of patients (105 - 129) and in 15-18 reduction mammoplasty samples were already aberrantly methylated in adjacent, histologically normal tissue vs. non-cancerous mammoplasty samples (p ≤0.01). In addition, examination of transcriptome and DNA methylation databases indicated that methylation at three non-promoter regions (far-upstream EN1 and PITX2 and intronic LHX2) was associated with higher gene expression, unlike the inverse associations between cancer DNA hypermethylation and cancer-altered gene expression usually reported. These three non-promoter regions also exhibited normal tissue-specific hypermethylation positively associated with differentiation-related gene expression (in muscle progenitor cells vs. many other types of normal cells). The importance of considering the exact DNA region analyzed and the gene structure was further illustrated by bioinformatic analysis of an alternative promoter/intron gene region for APC. CONCLUSIONS: We confirmed the frequent DNA methylation changes in invasive breast cancer at a variety of genome locations and found evidence for an extensive field effect in breast cancer. In addition, we illustrate the power of combining publicly available whole-genome databases with a candidate gene approach to study cancer epigenetics.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , DNA Intergênico , Epigênese Genética , Regiões Promotoras Genéticas , Adulto , Idoso , Neoplasias da Mama/metabolismo , Biologia Computacional/métodos , Ilhas de CpG , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Pessoa de Meia-Idade , Análise de Sequência de DNA
12.
Cancer Res Commun ; 4(7): 1643-1654, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38912926

RESUMO

Despite lower rates and intensity of smoking, Black men experience a higher incidence of lung cancer compared to white men. The racial disparity in lung cancer is particularly pronounced in Chicago, a highly segregated urban city. Neighborhood conditions, particularly social stress, may play a role in lung tumorigenesis. Preliminary studies indicate that Black men residing in neighborhoods with higher rates of violent crime have significantly higher levels of hair cortisol, an indicator of stress response. To examine the relationship between social stress exposure and gene expression in lung tumors, we investigated glucocorticoid receptor (GR) binding in 15 lung tumor samples in relation to GR target gene expression levels and zip code level residential violent crime rates. Spatial transcriptomics and a version of ChIP sequencing known as CUT&RUN were used. Heatmap of genes, pathway analysis, and motif analysis were conducted at the statistical significance of P < 0.05. GR recruitment to chromatin was correlated with zip code level residential violent crime rate and overall GR binding increased with higher violent crime rates. Our findings suggest that exposure to residential violent crime may influence tumor biology via reprogramming GR recruitment. Prioritizing lung cancer screening in neighborhoods with increased social stress, such as high levels of violent crime, may reduce racial disparities in lung cancer. SIGNIFICANCE: Exposure to neighborhood violent crime is correlated with glucocorticoid signaling and lung tumor gene expression changes associated with increased tumor aggressiveness, suggesting social conditions have downstream biophysical consequences that contribute to lung cancer disparities.


Assuntos
Neoplasias Pulmonares , Receptores de Glucocorticoides , Características de Residência , Transdução de Sinais , Estresse Psicológico , Violência , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/metabolismo , Masculino , Características de Residência/estatística & dados numéricos , Estresse Psicológico/genética , Estresse Psicológico/epidemiologia , Estresse Psicológico/metabolismo , Violência/estatística & dados numéricos , Violência/etnologia , Chicago/epidemiologia , Negro ou Afro-Americano/genética , Negro ou Afro-Americano/estatística & dados numéricos , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade
13.
Nat Aging ; 4(6): 839-853, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858606

RESUMO

Thermogenic beige adipocytes are recognized as potential therapeutic targets for combating metabolic diseases. However, the metabolic advantages that they offer are compromised with aging. Here we show that treating mice with estrogen (E2), a hormone that decreases with age, can counteract the age-related decline in beige adipogenesis when exposed to cold temperature while concurrently enhancing energy expenditure and improving glucose tolerance in mice. Mechanistically, we found that nicotinamide phosphoribosyl transferase (NAMPT) plays a pivotal role in facilitating the formation of E2-induced beige adipocytes, which subsequently suppresses the onset of age-related endoplasmic reticulum (ER) stress. Furthermore, we found that targeting NAMPT signaling, either genetically or pharmacologically, can restore the formation of beige adipocytes by increasing the number of perivascular adipocyte progenitor cells. Conversely, the absence of NAMPT signaling prevents this process. Together, our findings shed light on the mechanisms regulating the age-dependent impairment of beige adipocyte formation and underscore the E2-NAMPT-controlled ER stress pathway as a key regulator of this process.


Assuntos
Adipócitos Bege , Adipogenia , Envelhecimento , Estresse do Retículo Endoplasmático , Estrogênios , Nicotinamida Fosforribosiltransferase , Nicotinamida Fosforribosiltransferase/metabolismo , Animais , Adipogenia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Estrogênios/metabolismo , Estrogênios/farmacologia , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Feminino , Camundongos Endogâmicos C57BL , Metabolismo Energético/efeitos dos fármacos
14.
Nutrients ; 15(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447229

RESUMO

This Special Issue seeks to compile a centered, influential, and well-referenced volume on the impact of diet and physical activity on various cardiometabolic risk factors [...].


Assuntos
Doenças Cardiovasculares , Dieta , Humanos , Fatores de Risco , Exercício Físico , Inquéritos e Questionários , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle
15.
Sci Rep ; 13(1): 14899, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689708

RESUMO

Currently, a noteworthy volume of information is available and shared every day through participation and communication of individuals on social media. These enormous contents with the right exploit and research leads to valuable discoveries. In this study, a deep framework of learning accurate detection of women's depression is proposed. It is beneficially guided by social media content of individual posts and tweets and an essential support from psycho-linguistic for providing the indicator depression signs vocabulary that creates the embedding words necessary for building the applied approach. The presented model is validated using dual datasets extracted from Twitter: the first dataset is general data formed by 700 women from different countries; the second contains only 80 women from KSA. A third benchmark dataset CLPsych 2015 is used for comparative analysis purposes. The model proved its performance on the three datasets and the obtained and reported in this paper results shows its effectiveness.


Assuntos
Benchmarking , Depressão , Humanos , Feminino , Depressão/diagnóstico , Comunicação , Aprendizagem , Linguística
16.
Cancers (Basel) ; 15(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37370761

RESUMO

It is crucial to understand molecular alterations in breast cancer and how they relate to clinicopathologic factors. We have previously shown that the glucocorticoid receptor (GCR) protein expression was reduced in invasive breast carcinoma compared to normal breast tissue. Glucocorticoids, signaling through the GCR, regulate several cellular processes via downstream targets such as serum/glucocorticoid-regulated kinase 1 (SGK1) and B-cell lymphoma 2 (Bcl-2). We measured the expression of SGK1 and Bcl-2, in respective breast cancer tissue arrays, from a multiracial cohort of breast cancer patients. Higher cytoplasmic SGK1 staining was stronger in breast cancer tissue compared to normal tissue, especially in hormone receptor-negative cases. Conversely, the expression of cytoplasmic Bcl-2 was reduced in breast cancer compared to normal tissue, especially in hormone receptor-negative cases. Bcl-2 staining was associated with the self-reported racial/ethnic category, an earlier clinical stage, a lower histological grade, and a higher survival rate. Bcl-2 expression was associated with longer survival in models adjusted for age and race (HR = 0.32, 95% CI: 0.15, 0.65), and Bcl-2 expression remained strongly positively associated with protection from breast cancer death, with additional adjustments for ER/PR status (HR = 0.41, 95% CI: 0.2, 0.85). SGK1 and Bcl-2 may play biological roles in breast cancer development and/or progression.

17.
Biomedicines ; 11(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37626782

RESUMO

Breast cancer has become the most common cancer in the US and worldwide. While advances in early detection and treatment have resulted in a 40% reduction in breast cancer mortality, this reduction has not been achieved uniformly among racial groups. A large percentage of non-metastatic breast cancer mortality is related to the cardiovascular effects of breast cancer therapies. These effects appear to be more prevalent among patients from historically marginalized racial/ethnic backgrounds, such as African American and Hispanic individuals. Anthracyclines, particularly doxorubicin and daunorubicin, are the first-line treatments for breast cancer patients. However, their use is limited by their dose-dependent and cumulative cardiotoxicity, manifested by cardiomyopathy, ischemic heart disease, arrhythmias, hypertension, thromboembolic disorders, and heart failure. Cardiotoxicity risk factors, such as genetic predisposition and preexisting obesity, diabetes, hypertension, and heart diseases, are more prevalent in racial/ethnic minorities and undoubtedly contribute to the risk. Yet, beyond these risk factors, racial/ethnic minorities also face unique challenges that contribute to disparities in the emerging field of cardio-oncology, including socioeconomic factors, food insecurity, and the inability to access healthcare providers, among others. The current review will address genetic, clinical, and social determinants that potentially contribute to this disparity.

18.
Cells ; 12(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37887297

RESUMO

Glycosphingolipids (GSLs) are products of lipid glycosylation that have been implicated in the development of cardiovascular diseases. In diabetes, the adipocyte microenvironment is characterized by hyperglycemia and inflammation, resulting in high levels of GSLs. Therefore, we sought to assess the GSL content in extracellular vesicles derived from the adipose tissues (adiposomes) of obese-diabetic (OB-T2D) subjects and their impact on endothelial cell function. To this end, endothelial cells were exposed to adiposomes isolated from OB-T2D versus healthy subjects. Cells were assessed for caveolar integrity and related signaling, such as Src-kinase and caveolin-1 (cav-1) phosphorylation, and functional pathways, such as endothelial nitric oxide synthase (eNOS) activity. Compared with adiposomes from healthy subjects, OB-T2D adiposomes had higher levels of GSLs, especially LacCer and GM3; they promoted cav-1 phosphorylation coupled to an obvious loss of endothelial surface caveolae and induced eNOS-uncoupling, peroxynitrite generation, and cav-1 nitrosylation. These effects were abolished by Src kinase inhibition and were not observed in GSL-depleted adiposomes. At the functional levels, OB-T2D adiposomes reduced nitric oxide production, shear response, and albumin intake in endothelial cells and impaired flow-induced dilation in healthy arterioles. In conclusion, OB-T2D adiposomes carried a detrimental GSL cargo that disturbed endothelial caveolae and the associated signaling.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Vasculares , Humanos , Cavéolas/metabolismo , Células Endoteliais/metabolismo , Gotículas Lipídicas/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Doenças Vasculares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo
19.
Cancers (Basel) ; 15(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37760550

RESUMO

Lung cancer is the leading cause of cancer death in the U.S. Therefore, it is imperative to identify novel biomarkers for the early detection and progression of lung cancer. PRMT6 is associated with poor lung cancer prognosis. However, analyzing PRMT6 expression manually in large samples is time-consuming posing a significant limitation for processing this biomarker. To overcome this issue, we trained and validated an automated method for scoring PRMT6 in lung cancer tissues, which can then be used as the standard method in future larger cohorts to explore population-level associations between PRMT6 expression and sociodemographic/clinicopathologic characteristics. We evaluated the ability of a trained artificial intelligence (AI) algorithm to reproduce the PRMT6 immunoreactive scores obtained by pathologists. Our findings showed that tissue segmentation to cancer vs. non-cancer tissues was the most critical parameter, which required training and adjustment of the algorithm to prevent scoring non-cancer tissues or ignoring relevant cancer cells. The trained algorithm showed a high concordance with pathologists with a correlation coefficient of 0.88. The inter-rater agreement was significant, with an intraclass correlation of 0.95 and a scale reliability coefficient of 0.96. In conclusion, we successfully optimized a machine learning algorithm for scoring PRMT6 expression in lung cancer that matches the degree of accuracy of scoring by pathologists.

20.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693431

RESUMO

Thermogenic beige adipocytes are recognized as potential therapeutic targets for combating metabolic diseases. However, the metabolic advantages they offer are compromised with aging. Here, we show that treating mice with estrogen (E2), a hormone that decreases with age, to mice can counteract the aging- related decline in beige adipocyte formation when subjected to cold, while concurrently enhancing energy expenditure and improving glucose tolerance. Mechanistically, we find that nicotinamide phosphoribosyltranferase (NAMPT) plays a pivotal role in facilitating the formation of E2-induced beige adipocytes, which subsequently suppresses the onset of age-related ER stress. Furthermore, we found that targeting NAMPT signaling, either genetically or pharmacologically, can restore the formation of beige adipocytes by increasing the number of perivascular adipocyte progenitor cells. Conversely, the absence of NAMPT signaling prevents this process. In conclusion, our findings shed light on the mechanisms governing the age-dependent impairment of beige adipocyte formation and underscore the E2-NAMPT controlled ER stress as a key regulator of this process. Highlights: Estrogen restores beige adipocyte failure along with improved energy metabolism in old mice.Estrogen enhances the thermogenic gene program by mitigating age-induced ER stress.Estrogen enhances the beige adipogenesis derived from SMA+ APCs.Inhibiting the NAMPT signaling pathway abolishes estrogen-promoted beige adipogenesis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa