Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 608(7924): 778-783, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922516

RESUMO

Ferroptosis, a non-apoptotic form of cell death marked by iron-dependent lipid peroxidation1, has a key role in organ injury, degenerative disease and vulnerability of therapy-resistant cancers2. Although substantial progress has been made in understanding the molecular processes relevant to ferroptosis, additional cell-extrinsic and cell-intrinsic processes that determine cell sensitivity toward ferroptosis remain unknown. Here we show that the fully reduced forms of vitamin K-a group of naphthoquinones that includes menaquinone and phylloquinone3-confer a strong anti-ferroptotic function, in addition to the conventional function linked to blood clotting by acting as a cofactor for γ-glutamyl carboxylase. Ferroptosis suppressor protein 1 (FSP1), a NAD(P)H-ubiquinone reductase and the second mainstay of ferroptosis control after glutathione peroxidase-44,5, was found to efficiently reduce vitamin K to its hydroquinone, a potent radical-trapping antioxidant and inhibitor of (phospho)lipid peroxidation. The FSP1-mediated reduction of vitamin K was also responsible for the antidotal effect of vitamin K against warfarin poisoning. It follows that FSP1 is the enzyme mediating warfarin-resistant vitamin K reduction in the canonical vitamin K cycle6. The FSP1-dependent non-canonical vitamin K cycle can act to protect cells against detrimental lipid peroxidation and ferroptosis.


Assuntos
Ferroptose , Vitamina K , Antídotos/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Carbono-Carbono Ligases/metabolismo , Coenzimas/metabolismo , Ferroptose/efeitos dos fármacos , Hidroquinonas/metabolismo , Hidroquinonas/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Vitamina K/metabolismo , Vitamina K/farmacologia , Varfarina/efeitos adversos
2.
EMBO Rep ; 24(10): e55981, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37560809

RESUMO

Accumulation of excess nutrients hampers proper liver function and is linked to nonalcoholic fatty liver disease (NAFLD) in obesity. However, the signals responsible for an impaired adaptation of hepatocytes to obesogenic dietary cues remain still largely unknown. Post-translational modification by the small ubiquitin-like modifier (SUMO) allows for a dynamic regulation of numerous processes including transcriptional reprogramming. We demonstrate that specific SUMOylation of transcription factor Prox1 represents a nutrient-sensitive determinant of hepatic fasting metabolism. Prox1 is highly SUMOylated on lysine 556 in the liver of ad libitum and refed mice, while this modification is abolished upon fasting. In the context of diet-induced obesity, Prox1 SUMOylation becomes less sensitive to fasting cues. The hepatocyte-selective knock-in of a SUMOylation-deficient Prox1 mutant into mice fed a high-fat/high-fructose diet leads to a reduction of systemic cholesterol levels, associated with the induction of liver bile acid detoxifying pathways during fasting. The generation of tools to maintain the nutrient-sensitive SUMO-switch on Prox1 may thus contribute to the development of "fasting-based" approaches for the preservation of metabolic health.

3.
Diabetologia ; 64(8): 1850-1865, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34014371

RESUMO

AIMS/HYPOTHESIS: Adipocytes are critical cornerstones of energy metabolism. While obesity-induced adipocyte dysfunction is associated with insulin resistance and systemic metabolic disturbances, adipogenesis, the formation of new adipocytes and healthy adipose tissue expansion are associated with metabolic benefits. Understanding the molecular mechanisms governing adipogenesis is of great clinical potential to efficiently restore metabolic health in obesity. Here we investigate the role of heart and neural crest derivatives-expressed 2 (HAND2) in adipogenesis. METHODS: Human white adipose tissue (WAT) was collected from two cross-sectional studies of 318 and 96 individuals. In vitro, for mechanistic experiments we used primary adipocytes from humans and mice as well as human multipotent adipose-derived stem (hMADS) cells. Gene silencing was performed using siRNA or genetic inactivation in primary adipocytes from loxP and or tamoxifen-inducible Cre-ERT2 mouse models with Cre-encoding mRNA or tamoxifen, respectively. Adipogenesis and adipocyte metabolism were measured by Oil Red O staining, quantitative PCR (qPCR), microarray, glucose uptake assay, western blot and lipolysis assay. A combinatorial RNA sequencing (RNAseq) and ChIP qPCR approach was used to identify target genes regulated by HAND2. In vivo, we created a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter (Hand2AdipoqCre) and performed a large panel of metabolic tests. RESULTS: We found that HAND2 is an obesity-linked white adipocyte transcription factor regulated by glucocorticoids that was necessary but insufficient for adipocyte differentiation in vitro. In a large cohort of humans, WAT HAND2 expression was correlated to BMI. The HAND2 gene was enriched in white adipocytes compared with brown, induced early in differentiation and responded to dexamethasone (DEX), a typical glucocorticoid receptor (GR, encoded by NR3C1) agonist. Silencing of NR3C1 in hMADS cells or deletion of GR in a transgenic conditional mouse model results in diminished HAND2 expression, establishing that adipocyte HAND2 is regulated by glucocorticoids via GR in vitro and in vivo. Furthermore, we identified gene clusters indirectly regulated by the GR-HAND2 pathway. Interestingly, silencing of HAND2 impaired adipocyte differentiation in hMADS and primary mouse adipocytes. However, a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter did not mirror these effects on adipose tissue differentiation, indicating that HAND2 was required at stages prior to Adipoq expression. CONCLUSIONS/INTERPRETATION: In summary, our study identifies HAND2 as a novel obesity-linked adipocyte transcription factor, highlighting new mechanisms of GR-dependent adipogenesis in humans and mice. DATA AVAILABILITY: Array data have been submitted to the GEO database at NCBI (GSE148699).


Assuntos
Adipócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica/fisiologia , Glucocorticoides/farmacologia , Obesidade/genética , Fatores de Transcrição/genética , Adipogenia/fisiologia , Tecido Adiposo Marrom/metabolismo , Adulto , Idoso , Animais , Estudos Transversais , Feminino , Inativação Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Adulto Jovem
4.
Hepatology ; 62(5): 1606-18, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25998209

RESUMO

UNLABELLED: Nuclear receptor corepressor 1 (NCoR1) is a transcriptional coregulator that has wide-ranging effects on gene expression patterns. In the liver, NCoR1 represses lipid synthesis in the fasting state, whereas it inhibits activation of peroxisome proliferator-activated receptor alpha (PPARα) upon feeding, thereby blunting ketogenesis. Here, we show that insulin by activation of protein kinase B induces phosphorylation of NCoR1 on serine 1460, which selectively favors its interaction with PPARα and estrogen-related receptor alpha (ERRα) over liver X receptor alpha (LXRα). Phosphorylation of NCoR1 on S1460 selectively derepresses LXRα target genes, resulting in increased lipogenesis, whereas, at the same time, it inhibits PPARα and ERRα targets, thereby attenuating oxidative metabolism in the liver. Phosphorylation-gated differential recruitment of NCoR1 to different nuclear receptors explains the apparent paradox that liver-specific deletion of NCoR1 concurrently induces both lipogenesis and oxidative metabolism owing to a global derepression of LXRα, PPARα, and ERRα activity. CONCLUSION: Phosphorylation-mediated recruitment switch of NCoR1 between nuclear receptor subsets provides a mechanism by which corepressors can selectively modulate liver energy metabolism during the fasting-feeding transition.


Assuntos
Fígado/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Animais , Ácidos Graxos/metabolismo , Células Hep G2 , Humanos , Insulina/farmacologia , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , PPAR alfa/fisiologia , Fosforilação , Receptores de Estrogênio/fisiologia , Receptor ERRalfa Relacionado ao Estrogênio
5.
J Biol Chem ; 286(45): 39632-43, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21937453

RESUMO

Type 1 diabetes is characterized by local inflammation (insulitis) in the pancreatic islets causing ß-cell loss. The mitochondrial pathway of apoptosis is regulated by the balance and interaction between Bcl-2 members. Here we clarify the molecular mechanism of ß-cell death triggered by the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interferon (IFN)-γ. The combination of TNF-α + IFN-γ induced DP5, p53 up-regulated modulator of apoptosis (PUMA), and Bim expression in human islets and rodent ß-cells. DP5 and PUMA inactivation by RNA interference partially protected against TNF-α + IFN-γ-induced ß-cell apoptosis. DP5 knock-out mice had increased ß-cell area, and isolated islets from these mice were resistant to cytokine exposure. Bim expression was transcriptionally regulated by STAT1, and its activation triggered cleavage of caspases. Silencing of Bim protected rodent and human ß-cells to a large extent against TNF-α + IFN-γ, indicating a major role of this BH3-only activator protein in the mechanism of apoptosis. Our data support a highly regulated and context-dependent modulation of specific Bcl-2 members controlling the mitochondrial pathway of ß-cell apoptosis during insulitis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Células Secretoras de Insulina/metabolismo , Interferon gama/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Idoso , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Inativação Gênica , Humanos , Interferon gama/genética , Interferon gama/farmacologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas/genética , Fator de Transcrição STAT1/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Sci Adv ; 8(42): eabo5555, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269831

RESUMO

Maladaptive insulin signaling is a key feature in the pathogenesis of severe metabolic disorders, including obesity and diabetes. Enhancing insulin sensitivity represents a major goal in the treatment of patients affected by diabetes. Here, we identify transforming growth factor-ß1 stimulated clone 22 D4 (TSC22D4) as a novel interaction partner for protein kinase B/Akt1, a critical mediator of insulin/phosphatidylinositol 3-kinase signaling pathway. While energy deprivation and oxidative stress promote the TSC22D4-Akt1 interaction, refeeding mice or exposing cells to glucose and insulin impairs this interaction, which relies on an intrinsically disordered region (D2 domain) within TSC22D4. Functionally, the interaction with TSC22D4 reduces basal phosphorylation of Akt and its downstream targets during starvation, thereby promoting insulin sensitivity. Genetic, liver-specific reconstitution experiments in mice demonstrate that the interaction between TSC22D4 and Akt1 improves glucose handling and insulin sensitivity. Overall, our findings postulate a model whereby TSC22D4 acts as an environmental sensor and interacts with Akt1 to regulate insulin signaling and glucose metabolism.


Assuntos
Resistência à Insulina , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Glucose/metabolismo , Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição , Fator de Crescimento Transformador beta1
7.
Cell Metab ; 34(3): 473-486.e9, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35120589

RESUMO

Fasting metabolism and immunity are tightly linked; however, it is largely unknown how immune cells contribute to metabolic homeostasis during fasting in healthy subjects. Here, we combined cell-type-resolved genomics and computational approaches to map crosstalk between hepatocytes and liver macrophages during fasting. We identified the glucocorticoid receptor (GR) as a key driver of fasting-induced reprogramming of the macrophage secretome including fasting-suppressed cytokines and showed that lack of macrophage GR impaired induction of ketogenesis during fasting as well as endotoxemia. Mechanistically, macrophage GR suppressed the expression of tumor necrosis factor (TNF) and promoted nuclear translocation of hepatocyte GR to activate a fat oxidation/ketogenesis-related gene program, cooperatively induced by GR and peroxisome proliferator-activated receptor alpha (PPARα) in hepatocytes. Together, our results demonstrate how resident liver macrophages directly influence ketogenesis in hepatocytes, thereby also outlining a strategy by which the immune system can set the metabolic tone during inflammatory disease and infection.


Assuntos
Jejum , Receptores de Glucocorticoides , Animais , Jejum/metabolismo , Hepatócitos/metabolismo , Humanos , Corpos Cetônicos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , PPAR alfa/metabolismo , Receptores de Glucocorticoides/metabolismo
8.
Mol Metab ; 60: 101487, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35378329

RESUMO

OBJECTIVE: Fibrotic organ responses have recently been identified as long-term complications in diabetes. Indeed, insulin resistance and aberrant hepatic lipid accumulation represent driving features of progressive non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis and non-alcoholic steatohepatitis (NASH) to fibrosis. Effective pharmacological regimens to stop progressive liver disease are still lacking to-date. METHODS: Based on our previous discovery of transforming growth factor beta-like stimulated clone (TSC)22D4 as a key driver of insulin resistance and glucose intolerance in obesity and type 2 diabetes, we generated a TSC22D4-hepatocyte specific knockout line (TSC22D4-HepaKO) and exposed mice to control or NASH diet models. Mechanistic insights were generated by metabolic phenotyping and single-nuclei RNA sequencing. RESULTS: Hepatic TSC22D4 expression was significantly correlated with markers of liver disease progression and fibrosis in both murine and human livers. Indeed, hepatic TSC22D4 levels were elevated in human NASH patients as well as in several murine NASH models. Specific genetic deletion of TSC22D4 in hepatocytes led to reduced liver lipid accumulation, improvements in steatosis and inflammation scores and decreased apoptosis in mice fed a lipogenic MCD diet. Single-nuclei RNA sequencing revealed a distinct TSC22D4-dependent gene signature identifying an upregulation of mitochondrial-related processes in hepatocytes upon loss of TSC22D4. An enrichment of genes involved in the TCA cycle, mitochondrial organization, and triglyceride metabolism underscored the hepatocyte-protective phenotype and overall decreased liver damage as seen in mouse models of hepatocyte-selective TSC22D4 loss-of-function. CONCLUSIONS: Together, our data uncover a new connection between targeted depletion of TSC22D4 and intrinsic metabolic processes in progressive liver disease. Hepatocyte-specific reduction of TSC22D4 improves hepatic steatosis and promotes hepatocyte survival via mitochondrial-related mechanisms thus paving the way for targeted therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Diabetes Mellitus Tipo 2/metabolismo , Fibrose , Hepatócitos/metabolismo , Humanos , Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fatores de Transcrição/metabolismo
9.
Life Sci Alliance ; 4(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33536239

RESUMO

Members of the lipocalin protein family serve as biomarkers for kidney disease and acute phase inflammatory reactions, and are under preclinical development for the diagnosis and therapy of allergies. However, none of the lipocalin family members has made the step into clinical development, mostly due to their complex biological activity and the lack of in-depth mechanistic knowledge. Here, we show that the hepatokine lipocalin 13 (LCN13) triggers glucose-dependent insulin secretion and cell proliferation of primary mouse islets. However, inhibition of endogenous LCN13 expression in lean mice did not alter glucose and lipid homeostasis. Enhanced hepatic secretion of LCN13 in either diet-induced or genetic obesity led to no discernible impact on systemic glucose and lipid metabolism, neither in preventive nor therapeutic setting. Of note, loss or forced LCN13 hepatic secretion did not trigger any compensatory regulation of related lipocalin family members. Together, these data are in stark contrast to the suggested gluco-regulatory and therapeutic role of LCN13 in obesity, and imply complex regulatory steps in LCN13 biology at the organismic level mitigating its principal insulinotropic effects.


Assuntos
Metabolismo Energético , Secreção de Insulina , Lipocalinas/genética , Lipocalinas/metabolismo , Animais , Biomarcadores , Imunofluorescência , Expressão Gênica , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Metabolismo dos Lipídeos , Lipocalinas/sangue , Fígado/metabolismo , Masculino , Camundongos , Obesidade/etiologia , Obesidade/metabolismo
10.
Cell Metab ; 33(8): 1685-1700.e9, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34237252

RESUMO

Liver fibrosis is a strong predictor of long-term mortality in individuals with metabolic-associated fatty liver disease; yet, the mechanisms underlying the progression from the comparatively benign fatty liver state to advanced non-alcoholic steatohepatitis (NASH) and liver fibrosis are incompletely understood. Using cell-type-resolved genomics, we show that comprehensive alterations in hepatocyte genomic and transcriptional settings during NASH progression, led to a loss of hepatocyte identity. The hepatocyte reprogramming was under tight cooperative control of a network of fibrosis-activated transcription factors, as exemplified by the transcription factor Elf-3 (ELF3) and zinc finger protein GLIS2 (GLIS2). Indeed, ELF3- and GLIS2-controlled fibrosis-dependent hepatokine genes targeting disease-associated hepatic stellate cell gene programs. Thus, interconnected transcription factor networks not only promoted hepatocyte dysfunction but also directed the intra-hepatic crosstalk necessary for NASH and fibrosis progression, implying that molecular "hub-centered" targeting strategies are superior to existing mono-target approaches as currently used in NASH therapy.


Assuntos
Redes Reguladoras de Genes , Hepatopatia Gordurosa não Alcoólica , Comunicação , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
11.
J Clin Invest ; 117(1): 143-52, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17187081

RESUMO

The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) control glucose homeostasis through well-defined actions on the islet beta cell via stimulation of insulin secretion and preservation and expansion of beta cell mass. We examined the importance of endogenous incretin receptors for control of glucose homeostasis through analysis of Glp1r(-/-), Gipr(-/-), and double incretin receptor knockout (DIRKO) mice fed a high-fat (HF) diet. DIRKO mice failed to upregulate levels of plasma insulin, pancreatic insulin mRNA transcripts, and insulin content following several months of HF feeding. Both single incretin receptor knockout and DIRKO mice exhibited resistance to diet-induced obesity, preservation of insulin sensitivity, and increased energy expenditure associated with increased locomotor activity. Moreover, plasma levels of plasminogen activator inhibitor-1 and resistin failed to increase significantly in DIRKO mice after HF feeding, and the GIP receptor agonist [D-Ala(2)]GIP, but not the GLP-1 receptor agonist exendin-4, increased the levels of plasma resistin in studies of both acute and chronic administration. These findings extend our understanding of how endogenous incretin circuits regulate glucose homeostasis independent of the beta cell via control of adipokine secretion and energy expenditure.


Assuntos
Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Receptores de Glucagon/fisiologia , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1 , Homeostase , Insulina/genética , Ilhotas Pancreáticas/fisiologia , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , Receptores de Glucagon/deficiência , Receptores de Glucagon/genética , Transcrição Gênica
12.
Gastroenterology ; 137(6): 2146-57, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19766644

RESUMO

BACKGROUND & AIMS: Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) activate pathways involved in beta cell survival and proliferation in vitro; we compared the relative importance of exogenous and endogenous GIP receptor (GIPR) and GLP-1 receptor (GLP-1R) activation for beta cell cytoprotection in mice. METHODS: The effects of incretin hormone receptor signaling on beta cell regeneration and survival were assessed in mice following administration of streptozotocin in the absence or presence of the GIPR agonist [D-Ala(2)]-GIP (D-GIP), the GLP-1R agonist exendin-4, or the dipeptidyl peptidase-4 inhibitor sitagliptin. Beta cell survival was assessed in Gipr(-/-) mice given streptozotocin and by gene expression profiling of RNA from islets isolated from Glp1r(-/-) and Gipr(-/-) mice. The antiapoptotic actions of sitagliptin were assessed in wild-type and dual incretin receptor knockout (DIRKO) mice. RESULTS: Administration of exendin-4 for 7 or 60 days improved blood glucose and insulin levels, reduced islet cell apoptosis, and increased pancreatic insulin content and beta cell mass. In contrast, D-GIP was less effective at improving these parameters under identical experimental conditions. Furthermore, Gipr(-/-) mice did not exhibit increased sensitivity to streptozotocin-induced diabetes. Sitagliptin reduced hemoglobin A(1c) levels and increased plasma and pancreatic levels of insulin after streptozotocin administration to wild-type mice. Sitagliptin reduced the levels of activated caspase-3 in wild-type islets but not in beta cells from DIRKO mice. CONCLUSIONS: There are functionally important differences in the pharmacologic and physiologic roles of incretin receptors in beta cells. GLP-1R signaling exerts more robust control of beta cell survival, relative to GIPR activation or dipeptidylpeptidase-4 inhibition in mice in vivo.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Glucagon/metabolismo , Transdução de Sinais , Animais , Apoptose , Glicemia/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Exenatida , Polipeptídeo Inibidor Gástrico/análogos & derivados , Polipeptídeo Inibidor Gástrico/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hemoglobinas Glicadas/metabolismo , Hipoglicemiantes/farmacologia , Incretinas/farmacologia , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/farmacologia , Pirazinas/farmacologia , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/deficiência , Receptores dos Hormônios Gastrointestinais/genética , Receptores de Glucagon/agonistas , Receptores de Glucagon/deficiência , Receptores de Glucagon/genética , Transdução de Sinais/efeitos dos fármacos , Fosfato de Sitagliptina , Fatores de Tempo , Triazóis/farmacologia , Peçonhas/farmacologia
13.
Gastroenterology ; 137(3): 997-1005, 1005.e1-4, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19482026

RESUMO

BACKGROUND & AIMS: Excessive postprandial lipemia is a prevalent condition that results from intestinal oversecretion of apolipoprotein B48 (apoB48)-containing lipoproteins. Glucagon-like peptide-2 (GLP-2) is a gastrointestinal-derived intestinotropic hormone that links nutrient absorption to intestinal structure and function. We investigated the effects of GLP-2 on intestinal lipid absorption and lipoprotein production. METHODS: Intestinal lipid absorption and chylomicron production were quantified in hamsters, wild-type mice, and Cd36(-/-) mice infused with exogenous GLP-2. Newly synthesized apoB48 was metabolically labelled in primary hamster jejunal fragments. Fatty acid absorption was measured, and putative fatty acid transporters were assessed by immunoblotting. RESULTS: Human GLP-2 increased secretion of the triglyceride (TG)-rich lipoprotein (TRL)-apoB48 following oral administration of olive oil to hamsters; TRL and cholesterol mass each increased 3-fold. Fast protein liquid chromatography profiling indicated that GLP-2 stimulated secretion of chylomicron/very low-density lipoprotein-sized particles. Moreover, GLP-2 directly stimulated apoB48 secretion in jejunal fragments cultured ex vivo, increased expression of fully glycosylated cluster of differentiation 36/fatty acid translocase (CD36), and induced intestinal absorption of [(3)H]triolein. The ability of GLP-2 to increase intestinal lipoprotein production was lost in Cd36(-/-) mice. CONCLUSIONS: GLP-2 stimulates intestinal apoB48-containing lipoprotein secretion, possibly through increased lipid uptake, via a pathway that requires CD36. These findings suggest that GLP-2 represents a nutrient-dependent signal that regulates intestinal lipid absorption and the assembly and secretion of TRLs from intestinal enterocytes.


Assuntos
Quilomícrons/metabolismo , Peptídeo 2 Semelhante ao Glucagon/fisiologia , Absorção Intestinal/fisiologia , Jejuno/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Animais , Apolipoproteína B-48/sangue , Apolipoproteína B-48/metabolismo , Antígenos CD36/metabolismo , Cricetinae , Gorduras Insaturadas na Dieta/administração & dosagem , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Absorção Intestinal/efeitos dos fármacos , Lipoproteínas/química , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triglicerídeos/química , Trioleína/metabolismo
14.
Nutrients ; 12(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708970

RESUMO

The bile acid receptor, TGR5, is a key regulator of glucose homeostasis, but the mechanisms by which TGR5 signaling improves glucose regulation are incompletely defined. In particular, TGR5 has an increasingly appreciated role in liver physiology and pathobiology; however, whether TGR5 signaling within the liver contributes to its glucoregulatory effects is unknown. Therefore, we investigated the role of hepatocyte TGR5 signaling on glucose regulation using a hepatocyte-specific TGR5 knockout mouse model. Hepatocyte-specific Tgr5Hep+/+ and Tgr5Hep-/- mice were fed a high fat diet (HFD) for 7 weeks and then orally gavaged with three doses of a highly potent, TGR5-specific agonist, Compound 18 (10 mg/kg), or vehicle, over 72 h and underwent an oral glucose tolerance test (OGTT) after the last dose. Herein, we report that TGR5 mRNA and protein is present in mouse hepatocytes. Cumulative food intake, body weight, and adiposity do not differ between Tgr5Hep+/+ and Tgr5Hep-/- mice with or without treatment with Compound 18. However, administration of Compound 18 improves glucose tolerance in Tgr5HEP+/+ mice, but not in Tgr5Hep-/- mice. Further, this effect occurred independent of body weight and GLP-1 secretion. Together, these data demonstrate that TGR5 is expressed in hepatocytes, where it functions as a key regulator of whole-body glucose homeostasis.


Assuntos
Glicemia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácidos Tri-Iodobenzoicos/farmacologia , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal , Dieta Hiperlipídica , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Homeostase , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais
15.
Endocrinology ; 149(11): 5670-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18669601

RESUMO

The proglucagon gene gives rise to multiple peptides that play diverse roles in the control of energy intake, gut motility, and nutrient disposal. Glucagon-like peptide-1 (GLP-1), a 30-amino-acid peptide regulates glucose homeostasis via control of insulin and glucagon secretion and by inhibition of gastric emptying and food intake. Oxyntomodulin (OXM) a 37-amino-acid peptide also derived from the proglucagon gene, binds to both the glucagon and GLP-1 receptor (GLP-1R); however, a separate OXM receptor has not yet been identified. Here we show that OXM, like other GLP-1R agonists, stimulates cAMP formation and lowers blood glucose after both oral and ip glucose administration, actions that require a functional GLP-1R. OXM also directly stimulates insulin secretion from murine islets and INS-1 cells in a glucose- and GLP-1R-dependent manner. Moreover, OXM ameliorates hyperglycemia and significantly reduces apoptosis in murine beta-cells after streptozotocin administration and directly reduces apoptosis in thapsigargin-treated INS-1 cells. Unexpectedly, OXM, but not the GLP-1R agonist exendin-4, increased plasma levels of insulin after oral glucose administration. Moreover, OXM administered at doses that potently lower blood glucose had no effect on inhibition of gastric emptying but reduced food intake in WT mice. Taken together, these findings illustrate that although structurally distinct proglucagon-derived peptides such as GLP-1 and OXM engage the GLP-1R, OXM mimics some but not all of the actions of GLP-1R agonists in vivo. These findings may have implications for therapeutic efforts using OXM as a long-acting GLP-1R agonist for the treatment of metabolic disorders.


Assuntos
Esvaziamento Gástrico/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Oxintomodulina/farmacologia , Receptores de Glucagon/agonistas , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Cricetinae , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Esvaziamento Gástrico/genética , Receptor do Peptídeo Semelhante ao Glucagon 1 , Teste de Tolerância a Glucose , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Receptores de Glucagon/genética
16.
J Nutr Biochem ; 57: 189-196, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29751292

RESUMO

Recent studies have demonstrated that dietary protein dilution (PD) can promote metabolic inefficiency and improve glucose metabolism. However, whether PD can promote other aspects of metabolic health, such as improve systemic lipid metabolism, and mechanisms therein remains unknown. Mouse models of obesity, such as high-fat-diet-fed C57Bl/6 N mice, and New Zealand Obese mice were fed normal (i.e., 20%P) and protein-dilute (i.e., 5%EP) diets. FGF21-/- and Cd36-/- and corresponding littermate +/+ controls were also studied to examine gene-diet interactions. Here, we show that chronic PD retards the development of hypertrigylceridemia and fatty liver in obesity and that this relies on the induction of the hepatokine fibroblast growth factor 21 (FGF21). Furthermore, PD greatly enhances systemic lipid homeostasis, the mechanisms by which include FGF21-stimulated, and cluster of differentiation 36 (CD36) mediated, fatty acid clearance by oxidative tissues, such as heart and brown adipose tissue. Taken together, our preclinical studies demonstrate a novel nutritional strategy, as well as highlight a role for FGF21-stimulated systemic lipid metabolism, in combating obesity-related dyslipidemia.


Assuntos
Proteínas Alimentares/farmacologia , Dislipidemias/dietoterapia , Ácidos Graxos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Obesidade/complicações , Animais , Antígenos CD36/genética , Dislipidemias/etiologia , Dislipidemias/metabolismo , Hipertrigliceridemia/dietoterapia , Hipertrigliceridemia/etiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/metabolismo
17.
Mol Metab ; 6(8): 873-881, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28752051

RESUMO

OBJECTIVE: Dietary protein dilution (PD) has been associated with metabolic advantages such as improved glucose homeostasis and increased energy expenditure. This phenotype involves liver-induced release of FGF21 in response to amino acid insufficiency; however, it has remained unclear whether dietary dilution of specific amino acids (AAs) is also required. Circulating branched chain amino acids (BCAAs) are sensitive to protein intake, elevated in the serum of obese humans and mice and thought to promote insulin resistance. We tested whether replenishment of dietary BCAAs to an AA-diluted (AAD) diet is sufficient to reverse the glucoregulatory benefits of dietary PD. METHODS: We conducted AA profiling of serum from healthy humans and lean and high fat-fed or New Zealand obese (NZO) mice following dietary PD. We fed wildtype and NZO mice one of three amino acid defined diets: control, total AAD, or the same diet with complete levels of BCAAs (AAD + BCAA). We quantified serum AAs and characterized mice in terms of metabolic efficiency, body composition, glucose homeostasis, serum FGF21, and tissue markers of the integrated stress response (ISR) and mTORC1 signaling. RESULTS: Serum BCAAs, while elevated in serum from hyperphagic NZO, were consistently reduced by dietary PD in humans and murine models. Repletion of dietary BCAAs modestly attenuated insulin sensitivity and metabolic efficiency in wildtype mice but did not restore hyperglycemia in NZO mice. While hepatic markers of the ISR such as P-eIF2α and FGF21 were unabated by dietary BCAA repletion, hepatic and peripheral mTORC1 signaling were fully or partially restored, independent of changes in circulating glucose or insulin. CONCLUSIONS: Repletion of BCAAs in dietary PD is sufficient to oppose changes in somatic mTORC1 signaling but does not reverse the hepatic ISR nor induce insulin resistance in type 2 diabetes during dietary PD.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas Alimentares/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Adulto , Aminoácidos de Cadeia Ramificada/sangue , Animais , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
18.
Cell Metab ; 26(6): 842-855.e5, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29056512

RESUMO

Breast tumor recurrence and metastasis represent the main causes of cancer-related death in women, and treatments are still lacking. Here, we define the lipogenic enzyme acetyl-CoA carboxylase (ACC) 1 as a key player in breast cancer metastasis. ACC1 phosphorylation was increased in invading cells both in murine and human breast cancer, serving as a point of convergence for leptin and transforming growth factor (TGF) ß signaling. ACC1 phosphorylation was mediated by TGFß-activated kinase (TAK) 1, and ACC1 inhibition was indispensable for the elevation of cellular acetyl-CoA, the subsequent increase in Smad2 transcription factor acetylation and activation, and ultimately epithelial-mesenchymal transition and metastasis induction. ACC1 deficiency worsened tumor recurrence upon primary tumor resection in mice, and ACC1 phosphorylation levels correlated with metastatic potential in breast and lung cancer patients. Given the demonstrated effectiveness of anti-leptin receptor antibody treatment in halting ACC1-dependent tumor invasiveness, our work defines a "metabolocentric" approach in metastatic breast cancer therapy.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias Pulmonares/secundário , Recidiva Local de Neoplasia/patologia , Acetil-CoA Carboxilase/genética , Acetilação , Animais , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Leptina/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Recidiva Local de Neoplasia/metabolismo , Análise Serial de Tecidos
20.
EMBO Mol Med ; 8(6): 654-69, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27137487

RESUMO

Recent studies have demonstrated that repeated short-term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered "growth arrest and DNA damage-inducible" GADD45ß as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre-diabetes and type 2 diabetes, in both mice and humans. Using whole-body knockout mice as well as liver/hepatocyte-specific gain- and loss-of-function strategies, we revealed a role for liver GADD45ß in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity-driven hyperglycaemia. In summary, fasting stress-induced GADD45ß represents a liver-specific molecular event promoting adaptive metabolic function.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Jejum , Ácidos Graxos/metabolismo , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas de Ligação a Ácido Graxo/metabolismo , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa