Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 90(22): 10182-10192, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27581983

RESUMO

A complete understanding of herpesvirus morphogenesis requires studies of capsid assembly dynamics in living cells. Although fluorescent tags fused to the VP26 and pUL25 capsid proteins are available, neither of these components is present on the initial capsid assembly, the procapsid. To make procapsids accessible to live-cell imaging, we made a series of recombinant pseudorabies viruses that encoded green fluorescent protein (GFP) fused in frame to the internal capsid scaffold and maturation protease. One recombinant, a GFP-VP24 fusion, maintained wild-type propagation kinetics in vitro and approximated wild-type virulence in vivo The fusion also proved to be well tolerated in herpes simplex virus. Viruses encoding GFP-VP24, along with a traditional capsid reporter fusion (pUL25/mCherry), demonstrated that GFP-VP24 was a reliable capsid marker and revealed that the protein remained capsid associated following entry into cells and upon nuclear docking. These dual-fluorescent viruses made possible the discrimination of procapsids during infection and monitoring of capsid shell maturation kinetics. The results demonstrate the feasibility of imaging herpesvirus procapsids and their morphogenesis in living cells and indicate that the encapsidation machinery does not substantially help coordinate capsid shell maturation. IMPORTANCE: The family Herpesviridae consists of human and veterinary pathogens that cause a wide range of diseases in their respective hosts. These viruses share structurally related icosahedral capsids that encase the double-stranded DNA (dsDNA) viral genome. The dynamics of capsid assembly and maturation have been inaccessible to examination in living cells. This study has overcome this technical hurdle and provides new insights into this fundamental stage of herpesvirus infection.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Genoma Viral/genética , Proteínas de Fluorescência Verde/metabolismo , Herpesvirus Suídeo 1/metabolismo , Masculino , Camundongos , Células Vero , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia , Internalização do Vírus
2.
J Virol ; 86(19): 10821-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22855481

RESUMO

A key step in adenovirus cell entry is viral penetration of cellular membranes to gain access to the cytoplasm and deliver the genome to the nucleus. Yet little is known about this important event in the adenoviral life cycle. Using the cytosolic protein galectin-3 (gal3) as a marker of membrane rupture with both live- and fixed-cell imaging, we demonstrate that in the majority of instances, exposure of pVI and recruitment of gal3 to ruptured membranes occur early at or near the cell surface and occur minimally in EEA-1-positive (EEA-1(+)) early endosomes or LAMP-1(+) late endosomes/lysosomes. Live-cell imaging of Ad5 egress from gal3(+) endosomes occurs most frequently from perinuclear locations. While the Ad5 capsid is observed escaping from gal3(+) endosomes, pVI appears to remain associated with the gal3(+) ruptured endosomes. Thus, Ad5 membrane rupture and endosomal escape appear to be both spatially and temporally distinct events.


Assuntos
Adenoviridae/metabolismo , Capsídeo/química , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Endossomos/metabolismo , Galectina 3/biossíntese , Células HEK293 , Células HeLa , Humanos , Cinética , Lisossomos/metabolismo , Microscopia de Fluorescência/métodos , Fatores de Tempo , Proteínas de Transporte Vesicular/biossíntese
3.
J Virol ; 85(6): 2631-41, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21209115

RESUMO

The identification of the adenovirus (AdV) protein that mediates endosome penetration during infection has remained elusive. Several lines of evidence from previous studies suggest that the membrane lytic factor of AdV is the internal capsid protein VI. While these earlier results imply a role for protein VI in endosome disruption, direct evidence during cell entry has not been demonstrated. To acquire more definitive proof, we engineered random mutations in a critical N-terminal amphipathic α-helix of VI in an attempt to generate AdV mutants that lack efficient membrane penetration and infection. Random mutagenesis within the context of the AdV genome was achieved via the development of a novel technique that incorporates both error-prone PCR and recombineering. Using this system, we identified a single mutation, L40Q, that significantly reduced infectivity and selectively impaired endosome penetration. Furthermore, we obtained biophysical data showing that the lack of efficient endosomalysis is associated with reduced insertion of the L40Q mutation in protein VI (VI-L40Q) into membranes. Our studies indicate that protein VI is the critical membrane lytic factor of AdV during cellular entry and reveal the biochemical basis for its membrane interactions.


Assuntos
Adenovírus Humanos/patogenicidade , Proteínas do Capsídeo/metabolismo , Endossomos/virologia , Membranas Intracelulares/metabolismo , Internalização do Vírus , Substituição de Aminoácidos/genética , Proteínas do Capsídeo/genética , Linhagem Celular , Análise Mutacional de DNA , Engenharia Genética/métodos , Genética Microbiana/métodos , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Reação em Cadeia da Polimerase/métodos , Recombinação Genética
4.
J Virol ; 83(15): 7375-83, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19458007

RESUMO

The structure of the adenovirus type 2 temperature-sensitive mutant 1 (Ad2ts1) was determined to a resolution of 10 A by cryo-electron microscopy single-particle reconstruction. Ad2ts1 was prepared at a nonpermissive temperature and contains the precursor forms of the capsid proteins IIIa, VI, and VIII; the core proteins VII, X (mu), and terminal protein (TP); and the L1-52K protein. Cell entry studies have shown that although Ad2ts1 can bind the coxsackievirus and Ad receptor and undergo internalization via alphav integrins, this mutant does not escape from the early endosome and is targeted for degradation. Comparison of the Ad2ts1 structure to that of mature Ad indicates that Ad2ts1 has a different core architecture. The Ad2ts1 core is closely associated with the icosahedral capsid, a connection which may be mediated by preproteins IIIa and VI. Density within hexon cavities is assigned to preprotein VI, and membrane disruption assays show that hexon shields the lytic activity of both the mature and precursor forms of protein VI. The internal surface of the penton base in Ad2ts1 appears to be anchored to the core by interactions with preprotein IIIa. Our structural analyses suggest that these connections to the core inhibit the release of the vertex proteins and lead to the cell entry defect of Ad2ts1.


Assuntos
Infecções por Adenoviridae/virologia , Adenoviridae/fisiologia , Adenoviridae/ultraestrutura , Mutação , Internalização do Vírus , Adenoviridae/química , Adenoviridae/genética , Capsídeo/química , Capsídeo/metabolismo , Linhagem Celular , Microscopia Crioeletrônica , Humanos , Temperatura , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética , Vírion/fisiologia , Vírion/ultraestrutura , Montagem de Vírus
5.
Virology ; 408(1): 31-8, 2010 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-20869737

RESUMO

Adenovirus disrupts endosomal membranes during cell entry. The membrane lytic capsid protein VI (pVI) facilitates entry by fragmenting membranes. Although an N-terminal amphipathic α-helix (VI-Φ) possesses similar membrane affinity as pVI, truncated protein lacking VI-Φ (VIΔ54) still possesses moderate membrane affinity. We demonstrate that incorporation of nickel-NTA lipids in membranes enhances the membrane affinity and the membrane lytic activity of VIΔ54. We also demonstrate that 3 predicted pVI α-helices within residues 54-114 associate with membranes, sitting roughly parallel to the membrane surface. His-tagged VIΔ54 is capable of fragmenting membranes similar to pVI and the VI-Φ peptide. Interestingly, neither VI-Φ nor His-tagged VIΔ54 can induce tubule formation in giant lipid vesicles as observed for pVI. These data suggest cooperativity between the amphipathic α-helix and residues in VIΔ54 to induce positive membrane curvature and tubule formation. These results provide additional details regarding the mechanism of nonenveloped virus membrane penetration.


Assuntos
Adenoviridae/fisiologia , Proteínas do Capsídeo/metabolismo , Membrana Celular/metabolismo , Internalização do Vírus , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Deleção de Sequência
6.
Virology ; 402(1): 11-9, 2010 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-20409568

RESUMO

Adenovirus (Ad) membrane penetration during cell entry is poorly understood. Here we show that antibodies which neutralize the membrane lytic activity of the Ad capsid protein VI interfere with Ad endosomal membrane penetration. In vitro studies using a peptide corresponding to an N-terminal amphipathic alpha-helix of protein VI (VI-Phi), as well as other truncated forms of protein VI suggest that VI-Phi is largely responsible for protein VI binding to and lysing of membranes. Additional studies suggest that VI-Phi lies nearly parallel to the membrane surface. Protein VI fragments membranes and induces highly curved structures. Further studies suggest that protein VI induces positive membrane curvature. These data support a model in which protein VI binds membranes, inducing positive curvature strain which ultimately leads to membrane fragmentation. These results agree with previous observations of Ad membrane permeabilization during cell entry and provide an initial mechanistic description of a nonenveloped virus membrane lytic protein.


Assuntos
Adenoviridae/fisiologia , Proteínas do Capsídeo/fisiologia , Membrana Celular/metabolismo , Internalização do Vírus , Proteínas do Capsídeo/genética , Linhagem Celular , Sobrevivência Celular , Humanos , Modelos Biológicos , Estrutura Terciária de Proteína , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa