Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Transl Med ; 20(1): 522, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371290

RESUMO

BACKGROUND: Cardiac mesenchymal stromal cells (C-MSC) were recently shown to differentiate into adipocytes and myofibroblasts to promote the aberrant remodeling of cardiac tissue that characterizes arrhythmogenic cardiomyopathy (ACM). A calcium (Ca2+) signaling dysfunction, mainly demonstrated in mouse models, is recognized as a mechanism impacting arrhythmic risk in ACM cardiomyocytes. Whether similar mechanisms influence ACM C-MSC fate is still unknown. Thus, we aim to ascertain whether intracellular Ca2+ oscillations and the Ca2+ toolkit are altered in human C-MSC obtained from ACM patients, and to assess their link with C-MSC-specific ACM phenotypes. METHODS AND RESULTS: ACM C-MSC show enhanced spontaneous Ca2+ oscillations and concomitant increased Ca2+/Calmodulin dependent kinase II (CaMKII) activation compared to control cells. This is manly linked to a constitutive activation of Store-Operated Ca2+ Entry (SOCE), which leads to enhanced Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate receptors. By targeting the Ca2+ handling machinery or CaMKII activity, we demonstrated a causative link between Ca2+ oscillations and fibro-adipogenic differentiation of ACM C-MSC. Genetic silencing of the desmosomal gene PKP2 mimics the remodelling of the Ca2+ signalling machinery occurring in ACM C-MSC. The anti-arrhythmic drug flecainide inhibits intracellular Ca2+ oscillations and fibro-adipogenic differentiation by selectively targeting SOCE. CONCLUSIONS: Altogether, our results extend the knowledge of Ca2+ dysregulation in ACM to the stromal compartment, as an etiologic mechanism of C-MSC-related ACM phenotypes. A new mode of action of flecainide on a novel mechanistic target is unveiled against the fibro-adipose accumulation in ACM.


Assuntos
Cardiomiopatias , Células-Tronco Mesenquimais , Camundongos , Animais , Humanos , Flecainida , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Miócitos Cardíacos , Cálcio , Cardiomiopatias/genética
2.
Acta Physiol (Oxf) ; 240(3): e14082, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38214033

RESUMO

AIMS: The heterozygous phospholamban (PLN) mutation R14del (PLN R14del+/- ) is associated with a severe arrhythmogenic cardiomyopathy (ACM) developing in the adult. "Superinhibition" of SERCA2a by PLN R14del is widely assumed to underlie the pathogenesis, but alternative mechanisms such abnormal energy metabolism have also been reported. This work aims to (1) to evaluate Ca2+ dynamics and energy metabolism in a transgenic (TG) mouse model of the mutation prior to cardiomyopathy development; (2) to test whether they are causally connected. METHODS: Ca2+ dynamics, energy metabolism parameters, reporters of mitochondrial integrity, energy, and redox homeostasis were measured in ventricular myocytes of 8-12 weeks-old, phenotypically silent, TG mice. Mutation effects were compared to pharmacological PLN antagonism and analyzed during modulation of sarcoplasmic reticulum (SR) and cytosolic Ca2+ compartments. Transcripts and proteins of relevant signaling pathways were evaluated. RESULTS: The mutation was characterized by hyperdynamic Ca2+ handling, compatible with a loss of SERCA2a inhibition by PLN. All components of energy metabolism were depressed; myocyte energy charge was preserved under quiescence but reduced during stimulation. Cytosolic Ca2+ buffering or SERCA2a blockade reduced O2 consumption with larger effect in the mutant. Signaling changes suggest cellular adaptation to perturbed Ca2+ dynamics and response to stress. CONCLUSIONS: (1) PLN R14del+/- loses its ability to inhibit SERCA2a, which argues against SERCA2a superinhibition as a pathogenetic mechanism; (2) depressed energy metabolism, its enhanced dependency on Ca2+ and activation of signaling responses point to an early involvement of metabolic stress in the pathogenesis of this ACM model.


Assuntos
Cardiomiopatias , Animais , Camundongos , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatias/genética , Camundongos Transgênicos , Mutação , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
3.
Antioxid Redox Signal ; 37(13-15): 1051-1071, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35459416

RESUMO

Aims: During calcific aortic valve stenosis (CAVS) progression, oxidative stress and endothelial dysfunction mark the initial pathogenic steps with a parallel dysregulation of the antioxidant systems. Here, we tested whether oxidation-induced protein S-glutathionylation (P-SSG) accounts for a phenotypic switch in human aortic valvular tissue, eventually leading to calcium deposition. Next, we tested whether countering this reactive oxygen species (ROS) surge would prevent these perturbations. Results: We employed state-of-the-art technologies, such as electron paramagnetic resonance (EPR), liquid chromatography-tandem mass spectrometry, imaging flow-cytometry, and live-cell imaging on human excised aortic valves and primary valve endothelial cells (VECs). We observed that a net rise in EPR-detected ROS emission marked the transition from fibrotic to calcific in human CAVS specimens, coupled to a progressive increment in P-SSG deposition. In human VECs (hVECs), treatment with 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid triggered highly oxidizing conditions prompting P-SSG accumulation, damaging mitochondria, and inducing endothelial nitric oxide synthase uncoupling. All the events conjured up in morphing these cells from their native endothelial phenotype into a damaged calcification-inducing one. As proof of principle, the use of the antioxidant N-acetyl-L-cysteine prevented these alterations. Innovation: Borne as a compensatory system to face excessive oxidative burden, with time, P-SSG contributes to the morphing of hVECs from their innate phenotype into a damaged one, paving the way to calcium deposition. Conclusion: Our data suggest that, in the human aortic valve, unremitted ROS emission along with a P-SSG build-up occurs and accounts, at least in part, for the morphological/functional changes leading to CAVS. Antioxid. Redox Signal. 37, 1051-1071.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Humanos , Valva Aórtica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Células Endoteliais/metabolismo , Cálcio/metabolismo , Estenose da Valva Aórtica/metabolismo , Fenótipo
4.
Cell Signal ; 27(2): 204-14, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25446257

RESUMO

CaMKs link transient increases in intracellular Ca(2+) with biological processes. In myeloid leukemia cells, CaMKII, activated by the bcr-abl oncogene, promotes cell proliferation. Inhibition of CaMKII activity restricts cell proliferation, and correlates with growth arrest and differentiation. The mechanism by which the inhibition of CaMKII results in growth arrest and differentiation in myeloid leukemia cells is still unknown. We report that inhibition of CaMKII activity results in an upregulation of CaMKIV mRNA and protein in leukemia cell lines. Conversely, expression of CaMKIV inhibits autophosphorylation and activation of CaMKII, and elicits G0/G1cell cycle arrest,impairing cell proliferation. Furthermore, U937 cells expressing CaMKIV show elevated levels of Cdk inhibitors p27(kip1) and p16(ink4a) and reduced levels of cyclins A, B1 and D1. These findings were also confirmed in the K562 leukemic cell line. The relationship between CaMKII and CaMKIV is also observed in primary acute myeloid leukemia (AML) cells, and it correlates with their immunophenotypic profile. Indeed, immature MO/M1 AML showed increased CaMKIV expression and decreased pCaMKII, whereas highly differentiated M4/M5 AML showed decreased CaMKIV expression and increased pCaMKII levels. Our data reveal a novel cross-talk between CaMKII and CaMKIV and suggest that CaMKII suppresses the expression of CaMKIV to promote leukemia cell proliferation.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Linhagem Celular Tumoral , Proliferação de Células , Ciclina A/metabolismo , Ciclina B1/metabolismo , Ciclina D1/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação para Baixo , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Imunofenotipagem , Células K562 , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Células U937
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa