Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(46): e2122121119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343245

RESUMO

The in vivo mechanisms underlying dominant syndromes caused by mutations in SRY-Box Transcription Factor 9 (SOX9) and SOX10 (SOXE) transcription factors, when they either are expressed alone or are coexpressed, are ill-defined. We created a mouse model for the campomelic dysplasia SOX9Y440X mutation, which truncates the transactivation domain but leaves DNA binding and dimerization intact. Here, we find that SOX9Y440X causes deafness via distinct mechanisms in the endolymphatic sac (ES)/duct and cochlea. By contrast, conditional heterozygous Sox9-null mice are normal. During the ES development of Sox9Y440X/+ heterozygotes, Sox10 and genes important for ionic homeostasis are down-regulated, and there is developmental persistence of progenitors, resulting in fewer mature cells. Sox10 heterozygous null mutants also display persistence of ES/duct progenitors. By contrast, SOX10 retains its expression in the early Sox9Y440X/+ mutant cochlea. Later, in the postnatal stria vascularis, dominant interference by SOX9Y440X is implicated in impairing the normal cooperation of SOX9 and SOX10 in repressing the expression of the water channel Aquaporin 3, thereby contributing to endolymphatic hydrops. Our study shows that for a functioning endolymphatic system in the inner ear, SOX9 regulates Sox10, and depending on the cell type and target gene, it works either independently of or cooperatively with SOX10. SOX9Y440X can interfere with the activity of both SOXE factors, exerting effects that can be classified as haploinsufficient/hypomorphic or dominant negative depending on the cell/gene context. This model of disruption of transcription factor partnerships may be applicable to congenital deafness, which affects ∼0.3% of newborns, and other syndromic disorders.


Assuntos
Surdez , Orelha Interna , Fatores de Transcrição SOX9 , Fatores de Transcrição SOXE , Animais , Camundongos , Surdez/metabolismo , Orelha Interna/metabolismo , Audição/genética , Homeostase , Camundongos Knockout , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
2.
J Allergy Clin Immunol ; 151(6): 1503-1512, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36796456

RESUMO

BACKGROUND: Albuterol is the drug most widely used as asthma treatment among African Americans despite having a lower bronchodilator drug response (BDR) than other populations. Although BDR is affected by gene and environmental factors, the influence of DNA methylation is unknown. OBJECTIVE: This study aimed to identify epigenetic markers in whole blood associated with BDR, study their functional consequences by multi-omic integration, and assess their clinical applicability in admixed populations with a high asthma burden. METHODS: We studied 414 children and young adults (8-21 years old) with asthma in a discovery and replication design. We performed an epigenome-wide association study on 221 African Americans and replicated the results on 193 Latinos. Functional consequences were assessed by integrating epigenomics with genomics, transcriptomics, and environmental exposure data. Machine learning was used to develop a panel of epigenetic markers to classify treatment response. RESULTS: We identified 5 differentially methylated regions and 2 CpGs genome-wide significantly associated with BDR in African Americans located in FGL2 (cg08241295, P = 6.8 × 10-9) and DNASE2 (cg15341340, P = 7.8 × 10-8), which were regulated by genetic variation and/or associated with gene expression of nearby genes (false discovery rate < 0.05). The CpG cg15341340 was replicated in Latinos (P = 3.5 × 10-3). Moreover, a panel of 70 CpGs showed good classification for those with response and nonresponse to albuterol therapy in African American and Latino children (area under the receiver operating characteristic curve for training, 0.99; for validation, 0.70-0.71). The DNA methylation model showed similar discrimination as clinical predictors (P > .05). CONCLUSIONS: We report novel associations of epigenetic markers with BDR in pediatric asthma and demonstrate for the first time the applicability of pharmacoepigenetics in precision medicine of respiratory diseases.


Assuntos
Asma , Broncodilatadores , Criança , Adulto Jovem , Humanos , Adolescente , Adulto , Broncodilatadores/uso terapêutico , Epigenoma , Multiômica , Asma/tratamento farmacológico , Asma/genética , Asma/metabolismo , Albuterol/uso terapêutico , Metilação de DNA , Estudo de Associação Genômica Ampla , Fibrinogênio/metabolismo
3.
Thorax ; 78(3): 233-241, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36180068

RESUMO

BACKGROUND: In the USA, genetically admixed populations have the highest asthma prevalence and severe asthma exacerbations rates. This could be explained not only by environmental factors but also by genetic variants that exert ethnic-specific effects. However, no admixture mapping has been performed for severe asthma exacerbations. OBJECTIVE: We sought to identify genetic variants associated with severe asthma exacerbations in Hispanic/Latino subgroups by means of admixture mapping analyses and fine mapping, and to assess their transferability to other populations and potential functional roles. METHODS: We performed an admixture mapping in 1124 Puerto Rican and 625 Mexican American children with asthma. Fine-mapping of the significant peaks was performed via allelic testing of common and rare variants. We performed replication across Hispanic/Latino subgroups, and the transferability to non-Hispanic/Latino populations was assessed in 1001 African Americans, 1250 Singaporeans and 941 Europeans with asthma. The effects of the variants on gene expression and DNA methylation from whole blood were also evaluated in participants with asthma and in silico with data obtained through public databases. RESULTS: Genomewide significant associations of Indigenous American ancestry with severe asthma exacerbations were found at 5q32 in Mexican Americans as well as at 13q13-q13.2 and 3p13 in Puerto Ricans. The single nucleotide polymorphism (SNP) rs1144986 (C5orf46) showed consistent effects for severe asthma exacerbations across Hispanic/Latino subgroups, but it was not validated in non-Hispanics/Latinos. This SNP was associated with DPYSL3 DNA methylation and SCGB3A2 gene expression levels. CONCLUSIONS: Admixture mapping study of asthma exacerbations revealed a novel locus that exhibited Hispanic/Latino-specific effects and regulated DPYSL3 and SCGB3A2.


Assuntos
Asma , Hispânico ou Latino , Adolescente , Humanos , Asma/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/genética , Polimorfismo de Nucleotídeo Único , Estados Unidos/epidemiologia , Criança , Americanos Mexicanos
4.
PLoS Genet ; 16(8): e1008927, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32797036

RESUMO

The genetic control of gene expression is a core component of human physiology. For the past several years, transcriptome-wide association studies have leveraged large datasets of linked genotype and RNA sequencing information to create a powerful gene-based test of association that has been used in dozens of studies. While numerous discoveries have been made, the populations in the training data are overwhelmingly of European descent, and little is known about the generalizability of these models to other populations. Here, we test for cross-population generalizability of gene expression prediction models using a dataset of African American individuals with RNA-Seq data in whole blood. We find that the default models trained in large datasets such as GTEx and DGN fare poorly in African Americans, with a notable reduction in prediction accuracy when compared to European Americans. We replicate these limitations in cross-population generalizability using the five populations in the GEUVADIS dataset. Via realistic simulations of both populations and gene expression, we show that accurate cross-population generalizability of transcriptome prediction only arises when eQTL architecture is substantially shared across populations. In contrast, models with non-identical eQTLs showed patterns similar to real-world data. Therefore, generating RNA-Seq data in diverse populations is a critical step towards multi-ethnic utility of gene expression prediction.


Assuntos
Negro ou Afro-Americano/genética , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Transcriptoma , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Estudo de Associação Genômica Ampla/normas , Humanos , Locos de Características Quantitativas , RNA-Seq/métodos , RNA-Seq/normas , Padrões de Referência
5.
Genet Epidemiol ; 45(2): 190-208, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32989782

RESUMO

Bronchodilator (BD) drugs are commonly prescribed for treatment and management of obstructive lung function present with diseases such as asthma. Administration of BD medication can partially or fully restore lung function as measured by pulmonary function tests. The genetics of baseline lung function measures taken before BD medication have been extensively studied, and the genetics of the BD response itself have received some attention. However, few studies have focused on the genetics of post-BD lung function. To address this gap, we analyzed lung function phenotypes in 1103 subjects from the Study of African Americans, Asthma, Genes, and Environment, a pediatric asthma case-control cohort, using an integrative genomic analysis approach that combined genotype, locus-specific genetic ancestry, and functional annotation information. We integrated genome-wide association study (GWAS) results with an admixture mapping scan of three pulmonary function tests (forced expiratory volume in 1 s [FEV1 ], forced vital capacity [FVC], and FEV1 /FVC) taken before and after albuterol BD administration on the same subjects, yielding six traits. We identified 18 GWAS loci, and five additional loci from admixture mapping, spanning several known and novel lung function candidate genes. Most loci identified via admixture mapping exhibited wide variation in minor allele frequency across genotyped global populations. Functional fine-mapping revealed an enrichment of epigenetic annotations from peripheral blood mononuclear cells, fetal lung tissue, and lung fibroblasts. Our results point to three novel potential genetic drivers of pre- and post-BD lung function: ADAMTS1, RAD54B, and EGLN3.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Negro ou Afro-Americano/genética , Asma/tratamento farmacológico , Asma/genética , Criança , Volume Expiratório Forçado , Genômica , Humanos , Leucócitos Mononucleares , Pulmão , Polimorfismo de Nucleotídeo Único
6.
Am J Hum Genet ; 105(4): 747-762, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31543216

RESUMO

Runs of homozygosity (ROH) are important genomic features that manifest when an individual inherits two haplotypes that are identical by descent. Their length distributions are informative about population history, and their genomic locations are useful for mapping recessive loci contributing to both Mendelian and complex disease risk. We have previously shown that ROH, and especially long ROH that are likely the result of recent parental relatedness, are enriched for homozygous deleterious coding variation in a worldwide sample of outbred individuals. However, the distribution of ROH in admixed populations and their relationship to deleterious homozygous genotypes is understudied. Here we analyze whole-genome sequencing data from 1,441 unrelated individuals from self-identified African American, Puerto Rican, and Mexican American populations. These populations are three-way admixed between European, African, and Native American ancestries and provide an opportunity to study the distribution of deleterious alleles partitioned by local ancestry and ROH. We re-capitulate previous findings that long ROH are enriched for deleterious variation genome-wide. We then partition by local ancestry and show that deleterious homozygotes arise at a higher rate when ROH overlap African ancestry segments than when they overlap European or Native American ancestry segments of the genome. These results suggest that, while ROH on any haplotype background are associated with an inflation of deleterious homozygous variation, African haplotype backgrounds may play a particularly important role in the genetic architecture of complex diseases for admixed individuals, highlighting the need for further study of these populations.


Assuntos
Homozigoto , Alelos , Genótipo , Heterozigoto , Humanos , Sequenciamento Completo do Genoma
7.
Am J Respir Crit Care Med ; 203(4): 424-436, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32966749

RESUMO

Rationale: The 17q12-21.1 locus is one of the most highly replicated genetic associations with asthma. Individuals of African descent have lower linkage disequilibrium in this region, which could facilitate identifying causal variants.Objectives: To identify functional variants at 17q12-21.1 associated with early-onset asthma among African American individuals.Methods: We evaluated African American participants from SAPPHIRE (Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity) (n = 1,940), SAGE II (Study of African Americans, Asthma, Genes and Environment) (n = 885), and GCPD-A (Study of the Genetic Causes of Complex Pediatric Disorders-Asthma) (n = 2,805). Associations with asthma onset at ages under 5 years were meta-analyzed across cohorts. The lead signal was reevaluated considering haplotypes informed by genetic ancestry (i.e., African vs. European). Both an expression-quantitative trait locus analysis and a phenome-wide association study were performed on the lead variant.Measurements and Main Results: The meta-analyzed results from SAPPHIRE, SAGE II, and the GCPD-A identified rs11078928 as the top association for early-onset asthma. A haplotype analysis suggested that the asthma association partitioned most closely with the rs11078928 genotype. Genetic ancestry did not appear to influence the effect of this variant. In the expression-quantitative trait locus analysis, rs11078928 was related to alternative splicing of GSDMB (gasdermin-B) transcripts. The phenome-wide association study of rs11078928 suggested that this variant was predominantly associated with asthma and asthma-associated symptoms.Conclusions: A splice-acceptor polymorphism appears to be a causal variant for asthma at the 17q12-21.1 locus. This variant appears to have the same magnitude of effect in individuals of African and European descent.


Assuntos
Negro ou Afro-Americano/genética , Cromossomos Humanos Par 17 , Estudos de Associação Genética , Predisposição Genética para Doença/genética , População Branca/genética , Adolescente , Adulto , Idade de Início , Asma/genética , Criança , Pré-Escolar , Mapeamento Cromossômico , Feminino , Variação Genética , Humanos , Lactente , Recém-Nascido , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Estados Unidos , Adulto Jovem
8.
J Allergy Clin Immunol ; 148(5): 1324-1331.e12, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536416

RESUMO

BACKGROUND: Asthma is a heterogeneous disease. Clinical blood parameters differ by race/ethnicity and are used to distinguish asthma subtypes and inform therapies. Differences in subtypes may explain population-specific trends in asthma outcomes. However, these differences in racial/ethnic minority pediatric populations are unclear. OBJECTIVE: We investigated the association of blood parameters and asthma subtypes with asthma outcomes and examined population-specific eligibility for biologic therapies in minority pediatric populations. METHODS: Using data from 2 asthma case-control studies of pediatric minority populations, we performed case-control (N = 3738) and case-only (N = 2743) logistic regressions to quantify the association of blood parameters and asthma subtypes with asthma outcomes. Heterogeneity of these associations was tested using an interaction term between race/ethnicity and each exposure. Differences in therapeutic eligibility were investigated using chi-square tests. RESULTS: Race/ethnicity modified the association between total IgE and asthma exacerbations. Elevated IgE level was associated with worse asthma outcomes in Puerto Ricans. Allergic asthma was associated with worse outcomes in Mexican Americans, whereas eosinophilic asthma was associated with worse outcomes in Puerto Ricans. A lower proportion of Puerto Ricans met dosing criteria for allergic asthma-directed biologic therapy than other groups. A higher proportion of Puerto Ricans qualified for eosinophilic asthma-directed biologic therapy than African Americans. CONCLUSIONS: We found population-specific associations between blood parameters and asthma subtypes with asthma outcomes. Our findings suggest that eligibility for asthma biologic therapies differs across pediatric racial/ethnic populations. These findings call for more studies in diverse populations for equitable treatment of minority patients with asthma.


Assuntos
Antiasmáticos/uso terapêutico , Asma/epidemiologia , Produtos Biológicos/uso terapêutico , Etnicidade , Grupos Minoritários , Grupos Raciais , Adolescente , Asma/terapia , Estudos de Casos e Controles , Criança , Definição da Elegibilidade , Feminino , Humanos , Imunoglobulina E/sangue , Masculino , Fenótipo , Estados Unidos/epidemiologia , Adulto Jovem
9.
Pediatr Allergy Immunol ; 32(1): 106-115, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841424

RESUMO

BACKGROUND: Severe asthma exacerbations are a major cause of asthma morbidity and increased healthcare costs. Several studies have shown racial and ethnic differences in asthma exacerbation rates. We aimed to identify genetic variants associated with severe exacerbations in two high-risk populations for asthma. METHODS: A genome-wide association study of asthma in children and youth with severe exacerbations was performed in 1283 exacerbators and 2027 controls without asthma of Latino ancestry. Independent suggestive variants (P ≤ 5 × 10-6 ) were selected for replication in 448 African Americans exacerbators and 595 controls. Case-only analyses were performed comparing the exacerbators with additional 898 Latinos and 524 African Americans asthma patients without exacerbations, while adjusting by treatment category as a proxy of asthma severity. We analyzed the functionality of associated variants with in silico methods and by correlating genotypes with methylation levels in whole blood in a subset of 473 Latinos. RESULTS: We identified two genome-wide significant associations for susceptibility to asthma with severe exacerbations, including a novel locus located at chromosome 2p21 (rs4952375, odds ratio = 1.39, P = 3.8 × 10-8 ), which was also associated with asthma exacerbations in a case-only analysis (odds ratio = 1.25, P = 1.95 × 10-3 ). This polymorphism is an expression quantitative trait locus of the long intergenic non-protein coding RNA 1913 (LINC01913) in lung tissues (P = 1.3 × 10-7 ) and influences methylation levels of the protein kinase domain-containing cytoplasmic (PKDCC) gene in whole-blood cells (P = 9.8 × 10-5 ). CONCLUSION: We identified a novel susceptibility locus for severe asthma exacerbations in Hispanic/Latino and African American youths with functional effects in gene expression and methylation status of neighboring genes.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Adolescente , Negro ou Afro-Americano/genética , Asma/genética , Predisposição Genética para Doença , Hispânico ou Latino/genética , Humanos , Polimorfismo de Nucleotídeo Único
10.
Am J Respir Crit Care Med ; 202(7): 962-972, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32459537

RESUMO

Rationale: Puerto Ricans have the highest childhood asthma prevalence in the United States (23.6%); however, the etiology is uncertain.Objectives: In this study, we sought to uncover the genetic architecture of lung function in Puerto Rican youth with and without asthma who were recruited from the island (n = 836).Methods: We used admixture-mapping and whole-genome sequencing data to discover genomic regions associated with lung function. Functional roles of the prioritized candidate SNPs were examined with chromatin immunoprecipitation sequencing, RNA sequencing, and expression quantitative trait loci data.Measurements and Main Results: We discovered a genomic region at 1q32 that was significantly associated with a 0.12-L decrease in the lung volume of exhaled air (95% confidence interval, -0.17 to -0.07; P = 6.62 × 10-8) with each allele of African ancestry. Within this region, two SNPs were expression quantitative trait loci of TMEM9 in nasal airway epithelial cells and MROH3P in esophagus mucosa. The minor alleles of these SNPs were associated with significantly decreased lung function and decreased TMEM9 gene expression. Another admixture-mapping peak was observed on chromosome 5q35.1, indicating that each Native American ancestry allele was associated with a 0.15-L increase in lung function (95% confidence interval, 0.08-0.21; P = 5.03 × 10-6). The region-based association tests identified four suggestive windows that harbored candidate rare variants associated with lung function.Conclusions: We identified common and rare genetic variants that may play a critical role in lung function among Puerto Rican youth. We independently validated an inflammatory pathway that could potentially be used to develop more targeted treatments and interventions for patients with asthma.


Assuntos
Asma/genética , População Negra/genética , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 5/genética , Volume Expiratório Forçado/genética , Indígenas Norte-Americanos/genética , Pulmão/fisiopatologia , Adolescente , Asma/fisiopatologia , Brônquios/citologia , Estudos de Casos e Controles , Linhagem Celular , Criança , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Mucosa Esofágica/metabolismo , Feminino , Expressão Gênica , Humanos , Desequilíbrio de Ligação , Pulmão/fisiologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Miócitos de Músculo Liso , Mucosa Nasal/metabolismo , Polimorfismo de Nucleotídeo Único , Porto Rico , Locos de Características Quantitativas , Análise de Sequência de RNA , População Branca/genética , Sequenciamento Completo do Genoma , Adulto Jovem
11.
Respir Res ; 21(1): 31, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992292

RESUMO

BACKGROUND: Global gene expression levels are known to be highly dependent upon gross demographic features including age, yet identification of age-related genomic indicators has yet to be comprehensively undertaken in a disease and treatment-specific context. METHODS: We used gene expression data from CD4+ lymphocytes in the Asthma BioRepository for Integrative Genomic Exploration (Asthma BRIDGE), an open-access collection of subjects participating in genetic studies of asthma with available gene expression data. Replication population participants were Puerto Rico islanders recruited as part of the ongoing Genes environments & Admixture in Latino Americans (GALA II), who provided nasal brushings for transcript sequencing. The main outcome measure was chronic asthma control as derived by questionnaires. Genomic associations were performed using regression of chronic asthma control score on gene expression with age in years as a covariate, including a multiplicative interaction term for gene expression times age. RESULTS: The SMARCD1 gene (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1) interacted with age to influence chronic asthma control on inhaled corticosteroids, with a doubling of expression leading to an increase of 1.3 units of chronic asthma control per year (95% CI [0.86, 1.74], p = 6 × 10- 9), suggesting worsening asthma control with increasing age. This result replicated in GALA II (p = 3.8 × 10- 8). Cellular assays confirmed the role of SMARCD1 in glucocorticoid response in airway epithelial cells. CONCLUSION: Focusing on age-dependent factors may help identify novel indicators of asthma medication response. Age appears to modulate the effect of SMARCD1 on asthma control with inhaled corticosteroids.


Assuntos
Corticosteroides/administração & dosagem , Asma/tratamento farmacológico , Asma/genética , Proteínas Cromossômicas não Histona/biossíntese , Proteínas Cromossômicas não Histona/genética , Hispânico ou Latino/genética , Administração por Inalação , Adolescente , Adulto , Fatores Etários , Asma/metabolismo , Criança , Estudos de Coortes , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
12.
J Allergy Clin Immunol ; 144(3): 839-845.e10, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31247265

RESUMO

BACKGROUND: Telomere length (TL) can serve as a potential biomarker for conditions associated with chronic oxidative stress and inflammation, such as asthma. Air pollution can induce oxidative stress. Understanding the relationship between TL, asthma, and air pollution is important for identifying risk factors contributing to unhealthy aging in children. OBJECTIVES: We sought to investigate associations between exposures to ambient air pollutants and TL in African American children and adolescents and to examine whether African ancestry, asthma status, and steroid medication use alter the association. METHODS: Linear regression was used to examine associations between absolute telomere length (aTL) and estimated annual average residential ozone (O3) and fine particulate matter with a diameter of 2.5 µm or less (PM2.5) exposures in a cross-sectional analysis of 1072 children in an existing asthma case-control study. African ancestry, asthma status, and use of steroid medications were examined as effect modifiers. RESULTS: Participants' aTLs were measured by using quantitative PCR. A 1-ppb and 1 µg/m3 increase in annual average exposure to O3 and PM2.5 were associated with a decrease in aTL of 37.1 kilo-base pair (kb; 95% CI, -66.7 to -7.4 kb) and 57.1 kb (95% CI, -118.1 to 3.9 kb), respectively. African ancestry and asthma were not effect modifiers; however, exposure to steroid medications modified the relationships between TL and pollutants. Past-year exposure to O3 and PM2.5 was associated with shorter TLs in patients without steroid use. CONCLUSION: Exposure to air pollution was associated with shorter TLs in nonasthmatic children and adolescents. This was not the case for asthmatic children as a group, but those receiving steroid medication had less shortening than those not using steroids. Reduced exposure to air pollution in childhood might help to preserve TL.


Assuntos
Poluição do Ar , Asma/tratamento farmacológico , Negro ou Afro-Americano , Exposição Ambiental , Esteroides/uso terapêutico , Telômero , Adolescente , Adulto , Poluentes Atmosféricos , Asma/etnologia , Criança , Humanos , Ozônio , Material Particulado , Adulto Jovem
13.
Pharmacogenomics J ; 19(3): 249-259, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30206298

RESUMO

Short-acting ß2-adrenergic receptor agonists (SABAs) are the most commonly prescribed asthma medications worldwide. Response to SABAs is measured as bronchodilator drug response (BDR), which varies among racial/ethnic groups in the United States. However, the genetic variation that contributes to BDR is largely undefined in African Americans with asthma. To identify genetic variants that may contribute to differences in BDR in African Americans with asthma, we performed a genome-wide association study (GWAS) of BDR in 949 African-American children with asthma, genotyped with the Axiom World Array 4 (Affymetrix, Santa Clara, CA) followed by imputation using 1000 Genomes phase III genotypes. We used linear regression models adjusting for age, sex, body mass index (BMI) and genetic ancestry to test for an association between BDR and genotype at single-nucleotide polymorphisms (SNPs). To increase power and distinguish between shared vs. population-specific associations with BDR in children with asthma, we performed a meta-analysis across 949 African Americans and 1830 Latinos (total = 2779). Finally, we performed genome-wide admixture mapping to identify regions whereby local African or European ancestry is associated with BDR in African Americans. We identified a population-specific association with an intergenic SNP on chromosome 9q21 that was significantly associated with BDR (rs73650726, p = 7.69 × 10-9). A trans-ethnic meta-analysis across African Americans and Latinos identified three additional SNPs within the intron of PRKG1 that were significantly associated with BDR (rs7903366, rs7070958 and rs7081864, p ≤ 5 × 10-8). Our results failed to replicate in three additional populations of 416 Latinos and 1615 African Americans. Our findings indicate that both population-specific and shared genetic variation contributes to differences in BDR in minority children with asthma, and that the genetic underpinnings of BDR may differ between racial/ethnic groups.

14.
Am J Respir Crit Care Med ; 197(12): 1552-1564, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29509491

RESUMO

RATIONALE: Albuterol, a bronchodilator medication, is the first-line therapy for asthma worldwide. There are significant racial/ethnic differences in albuterol drug response. OBJECTIVES: To identify genetic variants important for bronchodilator drug response (BDR) in racially diverse children. METHODS: We performed the first whole-genome sequencing pharmacogenetics study from 1,441 children with asthma from the tails of the BDR distribution to identify genetic association with BDR. MEASUREMENTS AND MAIN RESULTS: We identified population-specific and shared genetic variants associated with BDR, including genome-wide significant (P < 3.53 × 10-7) and suggestive (P < 7.06 × 10-6) loci near genes previously associated with lung capacity (DNAH5), immunity (NFKB1 and PLCB1), and ß-adrenergic signaling (ADAMTS3 and COX18). Functional analyses of the BDR-associated SNP in NFKB1 revealed potential regulatory function in bronchial smooth muscle cells. The SNP is also an expression quantitative trait locus for a neighboring gene, SLC39A8. The lack of other asthma study populations with BDR and whole-genome sequencing data on minority children makes it impossible to perform replication of our rare variant associations. Minority underrepresentation also poses significant challenges to identify age-matched and population-matched cohorts of sufficient sample size for replication of our common variant findings. CONCLUSIONS: The lack of minority data, despite a collaboration of eight universities and 13 individual laboratories, highlights the urgent need for a dedicated national effort to prioritize diversity in research. Our study expands the understanding of pharmacogenetic analyses in racially/ethnically diverse populations and advances the foundation for precision medicine in at-risk and understudied minority populations.


Assuntos
Albuterol/uso terapêutico , Asma/tratamento farmacológico , Broncodilatadores/uso terapêutico , Estudo de Associação Genômica Ampla , Americanos Mexicanos/genética , Variantes Farmacogenômicos/genética , Fatores Raciais , Adolescente , Negro ou Afro-Americano/genética , Criança , Feminino , Hispânico ou Latino/genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Estados Unidos
15.
Nucleic Acids Res ; 45(9): e73, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28180280

RESUMO

Accurate maps and DNA sequences for human subtelomere regions, along with detailed knowledge of subtelomere variation and long-range telomere-terminal haplotypes in individuals, are critical for understanding telomere function and its roles in human biology. Here, we use a highly automated whole genome mapping technology in nano-channel arrays to analyze large terminal human chromosome segments extending from chromosome-specific subtelomere sequences through subtelomeric repeat regions to terminal (TTAGGG)n repeat tracts. We establish detailed maps for subtelomere gap regions in the human reference sequence, detect many new large subtelomeric variants and demonstrate the feasibility of long-range haplotyping through segmentally duplicated subtelomere regions. These features make the method a uniquely valuable new tool for improving the quality of genome assemblies in complex DNA regions. Based on single molecule mapping of telomere-terminal DNA fragments, we provide proof of principle for a novel method to estimate telomere lengths linked to distinguishable telomeric haplotypes; this single-telomere genotyping method may ultimately enable delineation of human cis elements involved in telomere length regulation.


Assuntos
Mapeamento Cromossômico/métodos , Haplótipos , Telômero/genética , Automação , DNA , Estudos de Viabilidade , Variação Genética , Humanos , Sequências Repetitivas de Ácido Nucleico
16.
Thorax ; 73(11): 1041-1048, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29899038

RESUMO

BACKGROUND: Secondhand smoke (SHS) exposures have been linked to asthma-related outcomes but quantitative dose-responses using biomarkers of exposure have not been widely reported. OBJECTIVES: Assess dose-response relationships between plasma cotinine-determined SHS exposure and asthma outcomes in minority children, a vulnerable population exposed to higher levels of SHS and under-represented in the literature. METHODS: We performed analyses in 1172 Latino and African-American children with asthma from the mainland USA and Puerto Rico. We used logistic regression to assess relationships of cotinine levels ≥0.05 ng/mL with asthma exacerbations (defined as asthma-related hospitalisations, emergency room visits or oral steroid prescription) in the previous year and asthma control. The shape of dose-response relationships was assessed using a continuous exposure variable in generalised additive logistic models with penalised splines. RESULTS: The OR for experiencing asthma exacerbations in the previous year for cotinine levels ≥0.05 ng/mL, compared with <0.05 ng/mL, was 1.40 (95% CI 1.03 to 1.89), while the OR for poor asthma control was 1.53 (95% CI 1.12 to 2.13). Analyses for dose-response relationships indicated increasing odds of asthma outcomes related with increasing exposure, even at cotinine levels associated with light SHS exposures. CONCLUSIONS: Exposure to SHS was associated with higher odds of asthma exacerbations and having poorly controlled asthma with an increasing dose-response even at low levels of exposure. Our results support the conclusion that there are no safe levels of SHS exposures.


Assuntos
Asma/etnologia , Negro ou Afro-Americano , Hispânico ou Latino , Medição de Risco/métodos , Poluição por Fumaça de Tabaco/efeitos adversos , Adolescente , Asma/etiologia , Criança , Feminino , Humanos , Incidência , Masculino , Fatores de Risco , Estados Unidos/epidemiologia , Adulto Jovem
17.
Epidemiology ; 27(5): 656-62, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27153462

RESUMO

BACKGROUND: Sudden cardiac arrest has been linked independently both to stressful neighborhood conditions and to polymorphisms in the ADRB2 gene. The ADRB2 gene mediates sympathetic activation in response to stress. Therefore, if neighborhood conditions cause cardiac arrest through the stress pathway, the ADRB2 variant may modify the association between neighborhood conditions, such as socioeconomic deprivation and incidence of cardiac arrest. METHODS: The Cardiac Arrest Blood Study Repository is a population-based repository of specimens and other data from adult cardiac arrest patients residing in King County, Washington. Cases (n = 1,539) were 25- to 100-year-old individuals of European descent who experienced out-of-hospital cardiac arrest from 1988 to 2004. Interactions between neighborhood conditions and the ADRB2 genotype on cardiac arrest risk were assessed in a case-only study design. Gene-environment independence was assessed in blood samples obtained from King County residents initially contacted by random-digit dialing. RESULTS: Fewer than 4% of study subjects resided in socioeconomically deprived neighborhoods. Nonetheless, the case-only analysis indicated the presence of supramultiplicative interaction of socioeconomic deprivation and the homozygous Gln27Glu variant (case-only odds ratio: 1.8 [95% confidence interval: 1.0, 2.9]). Interactions between population density and the homozygous Gln27Glu variant were weaker (case-only odds ratio: 1.2 [95% confidence interval: 0.97, 1.5]). CONCLUSIONS: Findings support a supramultiplicative interaction between the Gln27Glu ADRB2 variant and socioeconomic deprivation among individuals of European descent. This result is consistent with the hypothesis that the elevation in cardiac arrest risk associated with socioeconomic deprivation operates through the stress pathway.


Assuntos
Interação Gene-Ambiente , Parada Cardíaca Extra-Hospitalar/epidemiologia , Receptores Adrenérgicos beta 2/genética , Características de Residência/estatística & dados numéricos , Fatores Socioeconômicos , População Branca/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Parada Cardíaca Extra-Hospitalar/genética , Polimorfismo de Nucleotídeo Único , Washington/epidemiologia
18.
BMC Genomics ; 15: 387, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24885025

RESUMO

BACKGROUND: Although the reference human genome sequence was declared finished in 2003, some regions of the genome remain incomplete due to their complex architecture. One such region, 1q21.1-q21.2, is of increasing interest due to its relevance to human disease and evolution. Elucidation of the exact variants behind these associations has been hampered by the repetitive nature of the region and its incomplete assembly. This region also contains 238 of the 270 human DUF1220 protein domains, which are implicated in human brain evolution and neurodevelopment. Additionally, examinations of this protein domain have been challenging due to the incomplete 1q21 build. To address these problems, a single-haplotype hydatidiform mole BAC library (CHORI-17) was used to produce the first complete sequence of the 1q21.1-q21.2 region. RESULTS: We found and addressed several inaccuracies in the GRCh37sequence of the 1q21 region on large and small scales, including genomic rearrangements and inversions, and incorrect gene copy number estimates and assemblies. The DUF1220-encoding NBPF genes required the most corrections, with 3 genes removed, 2 genes reassigned to the 1p11.2 region, 8 genes requiring assembly corrections for DUF1220 domains (~91 DUF1220 domains were misassigned), and multiple instances of nucleotide changes that reassigned the domain to a different DUF1220 subtype. These corrections resulted in an overall increase in DUF1220 copy number, yielding a haploid total of 289 copies. Approximately 20 of these new DUF1220 copies were the result of a segmental duplication from 1q21.2 to 1p11.2 that included two NBPF genes. Interestingly, this duplication may have been the catalyst for the evolutionarily important human lineage-specific chromosome 1 pericentric inversion. CONCLUSIONS: Through the hydatidiform mole genome sequencing effort, the 1q21.1-q21.2 region is complete and misassemblies involving inter- and intra-region duplications have been resolved. The availability of this single haploid sequence path will aid in the investigation of many genetic diseases linked to 1q21, including several associated with DUF1220 copy number variations. Finally, the corrected sequence identified a recent segmental duplication that added 20 additional DUF1220 copies to the human genome, and may have facilitated the chromosome 1 pericentric inversion that is among the most notable human-specific genomic landmarks.


Assuntos
Cromossomos Humanos Par 1 , Genoma Humano , Evolução Biológica , Proteínas de Transporte/genética , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Ligação Genética , Haploidia , Humanos , Estrutura Terciária de Proteína/genética , Duplicações Segmentares Genômicas
19.
PLoS Genet ; 7(11): e1002356, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072985

RESUMO

Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9-GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between these opposing modes of transcriptional control by SOX9 may be mediated by cooperation with different partners such as GLI factors.


Assuntos
Desenvolvimento Ósseo/genética , Cartilagem/crescimento & desenvolvimento , Condrogênese/genética , Colágeno Tipo II/genética , Colágeno Tipo X/genética , Lâmina de Crescimento/crescimento & desenvolvimento , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição SOX9/metabolismo , Animais , Sequência de Bases , Diferenciação Celular/genética , Condrócitos/citologia , Condrócitos/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Motivos de Nucleotídeos/genética , Regiões Promotoras Genéticas , Transdução de Sinais , Ativação Transcricional , Proteína GLI1 em Dedos de Zinco
20.
Nat Commun ; 15(1): 3900, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724552

RESUMO

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Assuntos
Asma , Proteínas Ligadas por GPI , Interleucina-13 , Lectinas , Mucina-5AC , Muco , Criança , Humanos , Asma/genética , Asma/metabolismo , Citocinas , Células Epiteliais/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Lectinas/genética , Lectinas/metabolismo , Mucina-5AC/genética , Mucina-5AC/metabolismo , Muco/metabolismo , Mucosa Nasal/metabolismo , Polimorfismo Genético , Mucosa Respiratória/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa