Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732926

RESUMO

Muscle synergy has been widely acknowledged as a possible strategy of neuromotor control, but current research has ignored the potential inhibitory components in muscle synergies. Our study aims to identify and characterize the inhibitory components within motor modules derived from electromyography (EMG), investigate the impact of aging and motor expertise on these components, and better understand the nervous system's adaptions to varying task demands. We utilized a rectified latent variable model (RLVM) to factorize motor modules with inhibitory components from EMG signals recorded from ten expert pianists when they played scales and pieces at different tempo-force combinations. We found that older participants showed a higher proportion of inhibitory components compared with the younger group. Senior experts had a higher proportion of inhibitory components on the left hand, and most inhibitory components became less negative with increased tempo or decreased force. Our results demonstrated that the inhibitory components in muscle synergies could be shaped by aging and expertise, and also took part in motor control for adapting to different conditions in complex tasks.


Assuntos
Envelhecimento , Eletromiografia , Músculo Esquelético , Humanos , Eletromiografia/métodos , Envelhecimento/fisiologia , Músculo Esquelético/fisiologia , Adulto , Masculino , Feminino , Idoso , Adulto Jovem , Pessoa de Meia-Idade
2.
J Neural Eng ; 21(4)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975787

RESUMO

Objective. This research aims to reveal how the synergistic control of upper limb muscles adapts to varying requirements in complex motor tasks and how expertise shapes the motor modules.Approach. We study the muscle synergies of a complex, highly skilled and flexible task-piano playing-and characterize expertise-related muscle-synergy control that permits the experts to effortlessly execute the same task at different tempo and force levels. Surface EMGs (28 muscles) were recorded from adult novice (N= 10) and expert (N= 10) pianists as they played scales and arpeggios at different tempo-force combinations. Muscle synergies were factorized from EMGs.Main results. We found that experts were able to cover both tempo and dynamic ranges using similar synergy selections and achieved better performance, while novices altered synergy selections more to adapt to the changing tempi and keystroke intensities compared with experts. Both groups relied on fine-tuning the muscle weights within specific synergies to accomplish the different task styles, while the experts could tune the muscles in a greater number of synergies, especially when changing the tempo, and switch tempo over a wider range.Significance. Our study sheds light on the control mechanism underpinning expertise-related motor flexibility in highly skilled motor tasks that require decade-long training. Our results have implications on musical and sports training, as well as motor prosthetic design.


Assuntos
Movimento , Músculo Esquelético , Extremidade Superior , Humanos , Músculo Esquelético/fisiologia , Masculino , Adulto , Feminino , Adulto Jovem , Movimento/fisiologia , Extremidade Superior/fisiologia , Destreza Motora/fisiologia , Música , Desempenho Psicomotor/fisiologia , Eletromiografia/métodos
3.
Dialogues Clin Neurosci ; 26(1): 38-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963341

RESUMO

INTRODUCTION: One major challenge in developing personalised repetitive transcranial magnetic stimulation (rTMS) is that the treatment responses exhibited high inter-individual variations. Brain morphometry might contribute to these variations. This study sought to determine whether individual's brain morphometry could predict the rTMS responders and remitters. METHODS: This was a secondary analysis of data from a randomised clinical trial that included fifty-five patients over the age of 60 with both comorbid depression and neurocognitive disorder. Based on magnetic resonance imaging scans, estimated brain age was calculated with morphometric features using a support vector machine. Brain-predicted age difference (brain-PAD) was computed as the difference between brain age and chronological age. RESULTS: The rTMS responders and remitters had younger brain age. Every additional year of brain-PAD decreased the odds of relieving depressive symptoms by ∼25.7% in responders (Odd ratio [OR] = 0.743, p = .045) and by ∼39.5% in remitters (OR = 0.605, p = .022) in active rTMS group. Using brain-PAD score as a feature, responder-nonresponder classification accuracies of 85% (3rd week) and 84% (12th week), respectively were achieved. CONCLUSION: In elderly patients, younger brain age appears to be associated with better treatment responses to active rTMS. Pre-treatment brain age models informed by morphometry might be used as an indicator to stratify suitable patients for rTMS treatment. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: ChiCTR-IOR-16008191.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Masculino , Feminino , Idoso , Encéfalo/patologia , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Resultado do Tratamento , Transtornos Cognitivos/terapia , Depressão/terapia , Fatores Etários , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa