Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Proteome Res ; 23(4): 1443-1457, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38450643

RESUMO

We report the comparison of mass-spectral-based abundances of tryptic glycopeptides to fluorescence abundances of released labeled glycans and the effects of mass and charge state and in-source fragmentation on glycopeptide abundances. The primary glycoforms derived from Rituximab, NISTmAb, Evolocumab, and Infliximab were high-mannose and biantennary complex galactosylated and fucosylated N-glycans. Except for Evolocumab, in-source ions derived from the loss of HexNAc or HexNAc-Hex sugars are prominent for other therapeutic IgGs. After excluding in-source fragmentation of glycopeptide ions from the results, a linear correlation was observed between fluorescently labeled N-glycan and glycopeptide abundances over a dynamic range of 500. Different charge states of human IgG-derived glycopeptides containing a wider variety of abundant attached glycans were also investigated to examine the effects of the charge state on ion abundances. These revealed a linear dependence of glycopeptide abundance on the mass of the glycan with higher charge states favoring higher-mass glycans. Findings indicate that the mass spectrometry-based bottom-up approach can provide results as accurate as those of glycan release studies while revealing the origin of each attached glycan. These site-specific relative abundances are conveniently displayed and compared using previously described glycopeptide abundance distribution spectra "GADS" representations. Mass spectrometry data are available from the MAssIVE repository (MSV000093562).


Assuntos
Imunoglobulina G , Espectrometria de Massas em Tandem , Humanos , Glicosilação , Glicopeptídeos/análise , Polissacarídeos/química , Íons
2.
Nat Methods ; 18(7): 768-770, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34183830

RESUMO

Mass spectra provide the ultimate evidence to support the findings of mass spectrometry proteomics studies in publications, and it is therefore crucial to be able to trace the conclusions back to the spectra. The Universal Spectrum Identifier (USI) provides a standardized mechanism for encoding a virtual path to any mass spectrum contained in datasets deposited to public proteomics repositories. USI enables greater transparency of spectral evidence, with more than 1 billion USI identifications from over 3 billion spectra already available through ProteomeXchange repositories.


Assuntos
Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Proteômica/métodos , Processamento de Sinais Assistido por Computador , Software , Algoritmos
3.
J Proteome Res ; 22(7): 2246-2255, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37232537

RESUMO

The unbounded permutations of biological molecules, including proteins and their constituent peptides, present a dilemma in identifying the components of complex biosamples. Sequence search algorithms used to identify peptide spectra can be expanded to cover larger classes of molecules, including more modifications, isoforms, and atypical cleavage, but at the cost of false positives or false negatives due to the simplified spectra they compute from sequence records. Spectral library searching can help solve this issue by precisely matching experimental spectra to library spectra with excellent sensitivity and specificity. However, compiling spectral libraries that span entire proteomes is pragmatically difficult. Neural networks that predict complete spectra containing a full range of annotated and unannotated ions can be used to replace these simplified spectra with libraries of fully predicted spectra, including modified peptides. Using such a network, we created predicted spectral libraries that were used to rescore matches from a sequence search done over a large search space, including a large number of modifications. Rescoring improved the separation of true and false hits by 82%, yielding an 8% increase in peptide identifications, including a 21% increase in nonspecifically cleaved peptides and a 17% increase in phosphopeptides.


Assuntos
Biblioteca de Peptídeos , Proteoma , Proteoma/metabolismo , Inteligência Artificial , Espectrometria de Massas em Tandem , Algoritmos , Fosfopeptídeos , Bases de Dados de Proteínas , Software
4.
J Proteome Res ; 22(2): 287-301, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36626722

RESUMO

The Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) has been successfully developing guidelines, data formats, and controlled vocabularies (CVs) for the proteomics community and other fields supported by mass spectrometry since its inception 20 years ago. Here we describe the general operation of the PSI, including its leadership, working groups, yearly workshops, and the document process by which proposals are thoroughly and publicly reviewed in order to be ratified as PSI standards. We briefly describe the current state of the many existing PSI standards, some of which remain the same as when originally developed, some of which have undergone subsequent revisions, and some of which have become obsolete. Then the set of proposals currently being developed are described, with an open call to the community for participation in the forging of the next generation of standards. Finally, we describe some synergies and collaborations with other organizations and look to the future in how the PSI will continue to promote the open sharing of data and thus accelerate the progress of the field of proteomics.


Assuntos
Proteoma , Proteômica , Humanos , Padrões de Referência , Vocabulário Controlado , Espectrometria de Massas , Bases de Dados de Proteínas
5.
Anal Chem ; 92(7): 5231-5239, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32118408

RESUMO

In the past decade, the field of LC-MS-based metabolomics has transformed from an obscure specialty into a major "-omics" platform for studying metabolic processes and biomolecular characterization. However, as a whole the field is still very fractured, as the nature of the instrumentation and the information produced by the platform essentially creates incompatible "islands" of datasets. This lack of data coherency results in the inability to accumulate a critical mass of metabolomics data that has enabled other -omics platforms to make impactful discoveries and meaningful advances. As such, we have developed a novel algorithm, called Disparate Metabolomics Data Reassembler (DIMEDR), which attempts to bridge the inconsistencies between incongruent LC-MS metabolomics datasets of the same biological sample type. A single "primary" dataset is postprocessed via traditional means of peak identification, alignment, and grouping. DIMEDR utilizes this primary dataset as a progenitor template by which data from subsequent disparate datasets are reassembled and integrated into a unified framework that maximizes spectral feature similarity across all samples. This is accomplished by a novel procedure for universal retention time correction and comparison via identification of ubiquitous features in the initial primary dataset, which are subsequently utilized as endogenous internal standards during integration. For demonstration purposes, two human and two mouse urine metabolomics datasets from four unrelated studies acquired over 4 years were unified via DIMEDR, which enabled meaningful analysis across otherwise incomparable and unrelated datasets.


Assuntos
Algoritmos , Metabolômica , Animais , Cromatografia Líquida , Bases de Dados Factuais , Humanos , Espectrometria de Massas , Camundongos
6.
Anal Chem ; 92(15): 10316-10326, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32639750

RESUMO

This study significantly expands both the scope and method of identification for construction of a previously reported tandem mass spectral library of 74 human milk oligosaccharides (HMOs) derived from results of combined LC-MS/MS experiments and comprehensive structural analysis of HMOs. In the present work, a hybrid search "bootstrap" identification method was employed that substantially broadens the coverage of milk oligosaccharides and thereby increases utility use of a spectrum library-based method for the rapid tentative identification of all distinguishable glycans in milk. This involved hybrid searching of the previous library, which was itself constructed using the hybrid search of oligosaccharide spectra in the NIST 17 Tandem MS Library. The general approach appears applicable to library construction of other classes of compounds. The coverage of oligosaccharides was significantly extended using milks from a variety of mammals, including bovine, Asian buffalo, African lion, and goat. This new method led to the identification of another 145 oligosaccharides, including an additional 80 HMOs from reanalysis of human milk. The newly identified compounds were added to a freely available mass spectral reference database of 219 milk oligosaccharides. We also provide suggestions to overcome several limitations and pitfalls in the interpretation of spectra of unknown oligosaccharides.


Assuntos
Mamíferos , Leite Humano/química , Leite/química , Oligossacarídeos/química , Bibliotecas de Moléculas Pequenas , Animais , Humanos , Especificidade da Espécie , Espectrometria de Massas em Tandem
7.
Anal Chem ; 90(15): 8977-8988, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29969231

RESUMO

We report the development and availability of a mass spectral reference library for oligosaccharides in human milk. This represents a new variety of spectral library that includes consensus spectra of compounds annotated through various data analysis methods, a concept that can be extended to other varieties of biological fluids. Oligosaccharides from the NIST Standard Reference Material (SRM) 1953, composed of human milk pooled from 100 breastfeeding mothers, were identified and characterized using hydrophilic interaction liquid chromatography electrospray ionization tandem mass spectrometry (HILIC-ESI-MS/MS) and the NIST 17 Tandem MS Library. Consensus reference spectra were generated, incorporated into a searchable library, and matched using the newly developed hybrid search algorithm to elucidate unknown oligosaccharides. The NIST hybrid search program facilitates the structural assignment of complex oligosaccharides especially when reference standards are not commercially available. High accuracy mass measurement for precursor and product ions, as well as the relatively high MS/MS signal intensities of various oligosaccharide precursors with Fourier transform ion trap (FT-IT) and higher energy dissociation (HCD) fragmentation techniques, enabled the assignment of multiple free and underivatized fucosyllacto- and sialyllacto-oligosaccharide spectra. Neutral and sialylated isomeric oligosaccharides have distinct retention times, allowing the identification of 74 oligosaccharides in the reference material. This collection of newly characterized spectra based on a searchable, reference MS library of annotated oligosaccharides can be applied to analyze similar compounds in other types of milk or any biological fluid containing milk oligosaccharides.


Assuntos
Leite Humano/química , Oligossacarídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/normas , Humanos , Padrões de Referência , Espectrometria de Massas por Ionização por Electrospray/normas , Espectrometria de Massas em Tandem/normas
8.
J Proteome Res ; 16(10): 3805-3815, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28825479

RESUMO

The potential for radiological accidents and nuclear terrorism has increased the need for the development of new rapid biodosimetry methods. In addition, in a clinical setting the issue of an individual's radiosensitivity should be taken into consideration during radiotherapy. We utilized metabolomics and lipidomics to investigate changes of metabolites in serum samples following exposure to total body ionizing radiation in humans. Serum was collected prior to irradiation, at 3-8 h after a single dose of 1.25-2 Gy, and at 24 h with a total delivered dose of 2-3.75 Gy. Metabolomics revealed perturbations in glycerophosphocholine, phenylalanine, ubiquinone Q2, and oxalic acid. Alterations were observed in circulating levels of lipids from monoacylglycerol, triacylglycerol, phosphatidylcholine, and phosphatidylglycerol lipid classes. Polyunsaturated fatty acids were some of the most dysregulated lipids, with increased levels linked to proinflammatory processes. A targeted metabolomics approach for eicosanoids was also employed. The results showed a rapid response for proinflammatory eicosanoids, with a dampening of the signal at the later time point. Sex differences were observed in the markers from the untargeted approach but not the targeted method. The ability to identify and quantify small molecules in blood can therefore be utilized to monitor radiation exposure in human populations.


Assuntos
Inflamação/sangue , Lipídeos/sangue , Metaboloma/genética , Irradiação Corporal Total/efeitos adversos , Biomarcadores/sangue , Relação Dose-Resposta à Radiação , Eicosanoides/sangue , Eicosanoides/genética , Feminino , Humanos , Inflamação/etiologia , Inflamação/genética , Inflamação/patologia , Lipídeos/efeitos da radiação , Masculino , Metaboloma/efeitos da radiação , Metabolômica/métodos , Exposição à Radiação/efeitos adversos
9.
J Proteome Res ; 14(1): 374-84, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25333951

RESUMO

In this study ultra performance liquid chromatography (UPLC) coupled to time-of-flight mass spectrometry in the MS(E) mode was used for rapid and comprehensive analysis of metabolites in the serum of mice exposed to internal exposure by Cesium-137 ((137)Cs). The effects of exposure to (137)Cs were studied at several time points after injection of (137)CsCl in mice. Over 1800 spectral features were detected in the serum of mice in positive and negative electrospray ionization modes combined. Detailed statistical analysis revealed that several metabolites associated with amino acid metabolism, fatty acid metabolism, and the TCA cycle were significantly perturbed in the serum of (137)Cs-exposed mice compared with that of control mice. While metabolites associated with the TCA cycle and glycolysis increased in their serum abundances, fatty acids such as linoleic acid and palmitic acid were detected at lower levels in serum after (137)Cs exposure. Furthermore, phosphatidylcholines (PCs) were among the most perturbed ions in the serum of (137)Cs-exposed mice. This is the first study on the effects of exposure by an internal emitter in serum using a UPLC-MS(E) approach. The results have put forth a panel of metabolites, which may serve as potential serum markers to (137)Cs exposure.


Assuntos
Biomarcadores/sangue , Radioisótopos de Césio/toxicidade , Metabolismo dos Lipídeos/efeitos da radiação , Metaboloma/efeitos da radiação , Animais , Análise Química do Sangue/métodos , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Metabolômica/métodos , Camundongos , Fosfatidilcolinas/sangue , Análise de Componente Principal
10.
J Proteome Res ; 14(9): 4039-49, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26262552

RESUMO

Despite considerable research into the environmental risks and biological effects of exposure to external beam γ rays, incorporation of radionuclides has largely been understudied. This dosimetry and exposure risk assessment is challenging for first responders in the field during a nuclear or radiological event. Therefore, we have developed a workflow for assessing injury responses in easily obtainable biofluids, such as urine and serum, as the result of exposure to internal emitters cesium-137 ((137)Cs) and strontium-90 ((90)Sr) in mice. Here we report on the results of the untargeted lipidomic profiling of serum from mice exposed to (90)Sr. We also compared these results to those from previously published (137)Cs exposure to determine any differences in cellular responses based on exposure type. The results of this study conclude that there is a gross increase in the serum abundance of triacylglycerides and cholesterol esters, while phostaphatidylcholines and lysophosphatidylcholines displayed decreases in their serum levels postexposure at study days 4, 7, 9, 25, and 30, with corresponding average cumulative skeleton doses ranging from 1.2 ± 0.1 to 5.2 ± 0.73 Gy. The results show significant perturbations in serum lipidome as early as 2 days postexposure persisting until the end of the study (day 30).


Assuntos
Dislipidemias/sangue , Dislipidemias/induzido quimicamente , Lipídeos/sangue , Radioisótopos de Estrôncio/toxicidade , Animais , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL
11.
Anal Chem ; 87(6): 3177-86, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25683158

RESUMO

One of the consequences in analyzing biological data from noisy sources, such as human subjects, is the sheer variability of experimentally irrelevant factors that cannot be controlled for. This holds true especially in metabolomics, the global study of small molecules in a particular system. While metabolomics can offer deep quantitative insight into the metabolome via easy-to-acquire biofluid samples such as urine and blood, the aforementioned confounding factors can easily overwhelm attempts to extract relevant information. This can mar potentially crucial applications such as biomarker discovery. As such, a new algorithm, called Selective Paired Ion Contrast (SPICA), has been developed with the intent of extracting potentially biologically relevant information from the noisiest of metabolomic data sets. The basic idea of SPICA is built upon redefining the fundamental unit of statistical analysis. Whereas the vast majority of algorithms analyze metabolomics data on a single-ion basis, SPICA relies on analyzing ion-pairs. A standard metabolomic data set is reinterpreted by exhaustively considering all possible ion-pair combinations. Statistical comparisons between sample groups are made only by analyzing the differences in these pairs, which may be crucial in situations where no single metabolite can be used for normalization. With SPICA, human urine data sets from patients undergoing total body irradiation (TBI) and from a colorectal cancer (CRC) relapse study were analyzed in a statistically rigorous manner not possible with conventional methods. In the TBI study, 3530 statistically significant ion-pairs were identified, from which numerous putative radiation specific metabolite-pair biomarkers that mapped to potentially perturbed metabolic pathways were elucidated. In the CRC study, SPICA identified 6461 statistically significant ion-pairs, several of which putatively mapped to folic acid biosynthesis, a key pathway in colorectal cancer. Utilizing support vector machines (SVMs), SPICA was also able to unequivocally outperform binary classifiers built from classical single-ion feature based SVMs.


Assuntos
Algoritmos , Espectrometria de Massas , Metabolômica , Artefatos , Cromatografia Líquida , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/urina , Humanos , Recidiva , Estatística como Assunto , Máquina de Vetores de Suporte , Irradiação Corporal Total/efeitos adversos
12.
Anal Chem ; 86(1): 506-13, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24266674

RESUMO

Metabolomics, the global study of small molecules in a particular system, has in the past few years risen to become a primary -omics platform for the study of metabolic processes. With the ever-increasing pool of quantitative data yielded from metabolomic research, specialized methods and tools with which to analyze and extract meaningful conclusions from these data are becoming more and more crucial. Furthermore, the depth of knowledge and expertise required to undertake a metabolomics oriented study is a daunting obstacle to investigators new to the field. As such, we have created a new statistical analysis workflow, MetaboLyzer, which aims to both simplify analysis for investigators new to metabolomics, as well as provide experienced investigators the flexibility to conduct sophisticated analysis. MetaboLyzer's workflow is specifically tailored to the unique characteristics and idiosyncrasies of postprocessed liquid chromatography-mass spectrometry (LC-MS)-based metabolomic data sets. It utilizes a wide gamut of statistical tests, procedures, and methodologies that belong to classical biostatistics, as well as several novel statistical techniques that we have developed specifically for metabolomics data. Furthermore, MetaboLyzer conducts rapid putative ion identification and putative biologically relevant analysis via incorporation of four major small molecule databases: KEGG, HMDB, Lipid Maps, and BioCyc. MetaboLyzer incorporates these aspects into a comprehensive workflow that outputs easy to understand statistically significant and potentially biologically relevant information in the form of heatmaps, volcano plots, 3D visualization plots, correlation maps, and metabolic pathway hit histograms. For demonstration purposes, a urine metabolomics data set from a previously reported radiobiology study in which samples were collected from mice exposed to γ radiation was analyzed. MetaboLyzer was able to identify 243 statistically significant ions out of a total of 1942. Numerous putative metabolites and pathways were found to be biologically significant from the putative ion identification workflow.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Fluxo de Trabalho , Animais , Cromatografia Líquida/métodos , Humanos , Camundongos , Estatística como Assunto/métodos
13.
Radiat Environ Biophys ; 53(4): 645-57, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25047638

RESUMO

Metabolomics has been shown to have utility in assessing responses to exposure by ionizing radiation (IR) in easily accessible biofluids such as urine. Most studies to date from our laboratory and others have employed γ-irradiation at relatively high dose rates (HDR), but many environmental exposure scenarios will probably be at relatively low dose rates (LDR). There are well-documented differences in the biologic responses to LDR compared to HDR, so an important question is to assess LDR effects at the metabolomics level. Our study took advantage of a modern mass spectrometry approach in exploring the effects of dose rate on the urinary excretion levels of metabolites 2 days after IR in mice. A wide variety of statistical tools were employed to further focus on metabolites, which showed responses to LDR IR exposure (0.00309 Gy/min) distinguishable from those of HDR. From a total of 709 detected spectral features, more than 100 were determined to be statistically significant when comparing urine from mice irradiated with 1.1 or 4.45 Gy to that of sham-irradiated mice 2 days post-exposure. The results of this study show that LDR and HDR exposures perturb many of the same pathways such as TCA cycle and fatty acid metabolism, which also have been implicated in our previous IR studies. However, it is important to note that dose rate did affect the levels of particular metabolites. Differences in urinary excretion levels of such metabolites could potentially be used to assess an individual's exposure in a radiobiological event and thus would have utility for both triage and injury assessment.


Assuntos
Metaboloma/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesões por Radiação , Fatores de Tempo
14.
Elife ; 112022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35072627

RESUMO

Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this point obesity therapeutics have been targeted exclusively toward the human host. Here, we show that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency (Lepob/ob). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not reduce food intake but is instead associated with alterations in the gut microbiome, improvement in glucose tolerance, and enhanced energy expenditure. We also show that gut microbial CutC inhibition is associated with reorganization of host circadian control of both phosphatidylcholine and energy metabolism. This study underscores the relationship between microbe and host metabolism and provides evidence that gut microbe-derived trimethylamine (TMA) is a key regulator of the host circadian clock. This work also demonstrates that gut microbe-targeted enzyme inhibitors have potential as anti-obesity therapeutics.


Assuntos
Colina/análogos & derivados , Ritmo Circadiano/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/metabolismo , Animais , Colina/administração & dosagem , Colina/metabolismo , Dieta Hiperlipídica , Inibidores Enzimáticos/farmacologia , Leptina/deficiência , Liases/efeitos dos fármacos , Masculino , Metilaminas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/microbiologia
15.
Immunometabolism ; 3(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804604

RESUMO

BACKGROUND: A major contributor to cardiometabolic disease is caloric excess, often a result of consuming low cost, high calorie fast food. Studies have demonstrated the pivotal role of gut microbes contributing to cardiovascular disease in a diet-dependent manner. Given the central contributions of diet and gut microbiota to cardiometabolic disease, we hypothesized that microbial metabolites originating after fast food consumption can elicit acute metabolic responses in the liver. METHODS: We gave conventionally raised mice or mice that had their microbiomes depleted with antibiotics a single oral gavage of a liquified fast food meal or liquified control rodent chow meal. After four hours, mice were sacrificed and we used untargeted metabolomics of portal and peripheral blood, 16S rRNA gene sequencing, targeted liver metabolomics, and host liver RNA sequencing to identify novel fast food-derived microbial metabolites and their acute effects on liver function. RESULTS: Several candidate microbial metabolites were enriched in portal blood upon fast food feeding, and were essentially absent in antibiotic-treated mice. Strikingly, at four hours post-gavage, fast food consumption resulted in rapid reorganization of the gut microbial community and drastically altered hepatic gene expression. Importantly, diet-driven reshaping of the microbiome and liver transcriptome was dependent on an intact microbial community and not observed in antibiotic ablated animals. CONCLUSIONS: Collectively, these data suggest a single fast food meal is sufficient to reshape the gut microbial community in mice, yielding a unique signature of food-derived microbial metabolites. Future studies are in progress to determine the contribution of select metabolites to cardiometabolic disease progression and the translational relevance of these animal studies.

16.
Metabolites ; 10(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230777

RESUMO

Lack of standardized applications of bioinformatics and statistical approaches for pre- and postprocessing of global metabolomic profiling data sets collected using high-resolution mass spectrometry platforms remains an inadequately addressed issue in the field. Several publications now recognize that data analysis outcome variability is caused by different data treatment approaches. Yet, there is a lack of interlaboratory reproducibility studies that have looked at the contribution of data analysis techniques toward variability/overlap of results. The goal of our study was to identify the contribution of data pre- and postprocessing methods on metabolomics analysis results. We performed urinary metabolomics from samples obtained from mice exposed to 5 Gray of external beam gamma rays and those exposed to sham irradiation (control group). The data files were made available to study participants for comparative analysis using commonly used bioinformatics and/or biostatistics approaches in their laboratories. The participants were asked to report back the top 50 metabolites/features contributing significantly to the group differences. Herein we describe the outcome of this study which suggests that data preprocessing is critical in defining the outcome of untargeted metabolomic studies.

17.
Environ Mol Mutagen ; 59(7): 576-585, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30095186

RESUMO

Exposures to ionizing radiation (IR) may either be accidental or intentional, for medical purposes or even through terrorist actions. As certain populations emerge to be more radiosensitive than others, it is imperative to assess those individuals and treat them accordingly. To demonstrate the feasibility of rapid identification of such cases, we utilized the highly radiosensitive mouse model Atm-/- in the C57BL/6 background, and evaluated the urinary responses in 8-10 week old male mice at early time points (4, 24, and 72 h) after exposure to their respective LD50/30 doses [4 Gy for Atm-/- , and 8 Gy for wild type (WT)]. Urinary profiles from heterozygous animals exhibited remarkably similar responses to WT before and after radiation exposure. However, genotypic differences (WT or Atm-/- ) were the primary driver to responses to radiation. Putative metabolites were validated through tandem mass spectrometry and included riboflavin, uric acid, d-ribose, d-glucose, pantothenic acid, taurine, kynurenic acid, xanthurenic acid, 2-oxoadipic acid, glutaric acid, 5'-deoxy-5'-methylthioadenosine, and hippuric acid. These metabolites mapped to several interconnected metabolic pathways which suggest that radiosensitive mouse models have underlying differences significantly impacting overall metabolism. This was further amplified by ionizing radiation at different time points. This study further emphasizes that genetically based radiosensitivity is reflected in the metabolic processes, and can be directly observed in urine. These differences in turn can potentially be used to identify individuals that may require altered medical treatment in an emergency radiological situation or modification of a regimen during a radiotherapy session. Environ. Mol. Mutagen. 59:576-585, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Raios gama/efeitos adversos , Deleção de Genes , Metaboloma/efeitos da radiação , Metabolômica/métodos , Urina/química , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Relação Dose-Resposta à Radiação , Genótipo , Dose Letal Mediana , Masculino , Redes e Vias Metabólicas/efeitos da radiação , Camundongos Endogâmicos C57BL , Urinálise/métodos
18.
Mutat Res ; 788: 41-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27040378

RESUMO

The increased threat of radiological terrorism and accidental nuclear exposures, together with increased usage of radiation-based medical procedures, has made necessary the development of minimally invasive methods for rapid identification of exposed individuals. Genetically predisposed radiosensitive individuals comprise a significant number of the population and require specialized attention and treatments after such events. Metabolomics, the assessment of the collective small molecule content in a given biofluid or tissue, has proven effective in the rapid identification of radiation biomarkers and metabolic perturbations. To investigate how the genotypic background may alter the ionizing radiation (IR) signature, we analyzed urine from Parp1(-/-) mice, as a model radiosensitive genotype, exposed to IR by utilizing the analytical power of liquid chromatography coupled with mass spectrometry (LC-MS), as urine has been thoroughly investigated in wild type (WT) mice in previous studies from our laboratory. Samples were collected at days one and three after irradiation, time points that are important for the early and efficient triage of exposed individuals. Time-dependent perturbations in metabolites were observed in the tricarboxylic acid pathway (TCA). Other differentially excreted metabolites included amino acids and metabolites associated with dysregulation of energy metabolism pathways. Time-dependent apoptotic pathway activation between WT and mutant mice following IR exposure may explain the altered excretion patterns, although the origin of the metabolites remains to be determined. This first metabolomics study in urine from radiation exposed genetic mutant animal models provides evidence that this technology can be used to dissect the effects of genotoxic agents on metabolism by assessing easily accessible biofluids and identify biomarkers of radiation exposure. Applications of metabolomics could be incorporated in the future to further elucidate the effects of IR on the metabolism of Parp1(-/-) genotype by assessing individual tissues.


Assuntos
Biomarcadores/urina , Metaboloma/efeitos da radiação , Poli(ADP-Ribose) Polimerase-1/genética , Radiação Ionizante , Animais , Relação Dose-Resposta à Radiação , Genótipo , Masculino , Metabolômica , Camundongos Knockout , Doses de Radiação
19.
Metabolomics ; 12(5)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-28220056

RESUMO

INTRODUCTION: Due to dangers associated with potential accidents from nuclear energy and terrorist threats, there is a need for high-throughput biodosimetry to rapidly assess individual doses of radiation exposure. Lipidomics and metabolomics are becoming common tools for determining global signatures after disease or other physical insult and provide a "snapshot" of potential cellular damage. OBJECTIVES: The current study assesses changes in the nonhuman primate (NHP) serum lipidome and metabolome 7 days following exposure to ionizing radiation (IR). METHODS: Serum sample lipids and metabolites were extracted using a biphasic liquid-liquid extraction and analyzed by ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry. Global radiation signatures were acquired in data-independent mode. RESULTS: Radiation exposure caused significant perturbations in lipid metabolism, affecting all major lipid species, including free fatty acids, glycerolipids, glycerophospholipids and esterified sterols. In particular, we observed a significant increase in the levels of polyunsaturated fatty acids (PUFA)-containing lipids in the serum of NHPs exposed to 10 Gy radiation, suggesting a primary role played by PUFAs in the physiological response to IR. Metabolomics profiling indicated an increase in the levels of amino acids, carnitine, and purine metabolites in the serum of NHPs exposed to 10 Gy radiation, suggesting perturbations to protein digestion/absorption, biological oxidations, and fatty acid ß-oxidation. CONCLUSIONS: This is the first report to determine changes in the global NHP serum lipidome and metabolome following radiation exposure and provides information for developing metabolomic biomarker panels in human-based biodosimetry.

20.
PeerJ ; 4: e2174, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27602256

RESUMO

Background. Cystic fibrosis (CF) is a genetic disease that results in chronic infections of the lungs. CF patients experience intermittent pulmonary exacerbations (CFPE) that are associated with poor clinical outcomes. CFPE involves an increase in disease symptoms requiring more aggressive therapy. Methods. Longitudinal sputum samples were collected from 11 patients (n = 44 samples) to assess the effect of exacerbations on the sputum metabolome using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The data was analyzed with MS/MS molecular networking and multivariate statistics. Results. The individual patient source had a larger influence on the metabolome of sputum than the clinical state (exacerbation, treatment, post-treatment, or stable). Of the 4,369 metabolites detected, 12% were unique to CFPE samples; however, the only known metabolites significantly elevated at exacerbation across the dataset were platelet activating factor (PAF) and a related monacylglycerophosphocholine lipid. Due to the personalized nature of the sputum metabolome, a single patient was followed for 4.2 years (capturing four separate exacerbation events) as a case study for the detection of personalized biomarkers with metabolomics. PAF and related lipids were significantly elevated during CFPEs of this patient and ceramide was elevated during CFPE treatment. Correlating the abundance of bacterial 16S rRNA gene amplicons to metabolomics data from the same samples during a CFPE demonstrated that antibiotics were positively correlated to Stenotrophomonas and Pseudomonas, while ceramides and other lipids were correlated with Streptococcus, Rothia, and anaerobes. Conclusions. This study identified PAF and other inflammatory lipids as potential biomarkers of CFPE, but overall, the metabolome of CF sputum was patient specific, supporting a personalized approach to molecular detection of CFPE onset.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa